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ABSTRACT

Diffusion imaging aims to non-invasively characterize the anatomy and integrity of the brain’s white matter fibers. We evaluated the accuracy and reliability of
commonly used diffusion imaging methods as a function of data quantity and analysis method, using both simulations and highly sampled individual-specific data
(927-1442 diffusion weighted images [DWIs] per individual). Diffusion imaging methods that allow for crossing fibers (FSL’s BedpostX [BPX], DSI Studio’s Constant
Solid Angle Q-Ball Imaging [CSA-QBI], MRtrix3’s Constrained Spherical Deconvolution [CSD]) estimated excess fibers when insufficient data were present and/or
when the data did not match the model priors. To reduce such overfitting, we developed a novel Bayesian Multi-tensor Model-selection (BaMM) method and applied it
to the popular ball-and-stick model used in BedpostX within the FSL software package. BaMM was robust to overfitting and showed high reliability and the relatively
best crossing-fiber accuracy with increasing amounts of diffusion data. Thus, sufficient data and an overfitting resistant analysis method enhance precision diffusion
imaging. For potential clinical applications of diffusion imaging, such as neurosurgical planning and deep brain stimulation (DBS), the quantities of data required to

achieve diffusion imaging reliability are lower than those needed for functional MRI.

1. Introduction

Brain function is critically dependent on white matter tracts for inter-
lobe communication (Laughlin and Sejnowski, 2003). Studies of white
matter connecting distant regions of the brain have greatly advanced
our understanding of systems-level brain organization (Mori et al.,
2005). Damage to white matter via dysmyelination, demyelination,
stroke, or trauma, is a key component of many neurological disorders
(Corbetta et al., 2015; Lassmann et al., 2007; Mac Donald et al., 2011;
Rizzo et al., 2012).

Diffusion imaging is an MRI technique that provides information
about water diffusion, which can in turn be used to probe white matter
organization. Classic diffusion tensor imaging (DTI) entails acquisition
of multiple diffusion weighted images (DWI), each of which is sensi-

https://doi.org/10.1016/j.neuroimage.2022.119138.

tized to water diffusion in a particular direction. At least six orthogo-
nally oriented DWIs are required to estimate a single diffusion tensor
representing the orientation of white matter fibers at a given location
in the brain (Basser et al., 1994a, Basser et al., 1994b; Pierpaoli et al.,
1996). Several shape and orientation characteristics may be extracted
from the estimated diffusion tensor: fractional anisotropy (FA), radial
diffusivity (RD), axial diffusivity (AD), mean diffusivity (MD), and ori-
entation angles # and ¢. While a model describing a single tensor is the-
oretically adequate for simple fiber pathways, the single-tensor model
does not adequately describe the complex geometry of multiple crossing
fibers. More complex models potentially can account for multiple diffu-
sion compartments and thus resolve crossing fibers (Behrens et al., 2003;
Ferizi et al., 2014; Jbabdi et al., 2012; Jensen et al., 2005; Tournier et al.,
2013, 2019; Tuch, 2004; Zhang et al., 2012). Microstructure models us-
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ing specialized imaging sequences have attempted to further probe tis-
sue characteristics even further (Fan et al., 2021; Palombo et al., 2020;
Wang et al., 2014, 2015; Zong et al., 2021).

Early diffusion imaging studies acquired the minimum require-
ment of six orthogonal DWIs for computing a single diffusion ten-
sor (Pierpaoli et al., 1996). With improvements in MRI hardware and
software and the demand for more complex diffusion models, acquisi-
tion schemes have increased in complexity. Clinical diffusion imaging
studies typically acquire 12-30 DWIs per patient while research stud-
ies typically acquire 30-60 DWIs per participant (Jones and Cercig-
nani, 2010). Recent large sample studies such as the Human Connec-
tome Project (HCP, (Van Essen et al., 2012)) and the Adolescent Brain
Cognitive Development (ABCD, (Casey et al., 2018)) study, collected
297 and 103 DWIs per participant, respectively. Collecting even more
data per individual, through repeated sampling has been informative
for functional MRI (precision functional mapping [PFM]) (Braga and
Buckner, 2017; Gordon et al., 2017; Laumann et al., 2015), reveal-
ing previously undetected individual variants in functional network ar-
chitecture (Gordon et al., 2021; Gratton et al., 2018; Greene et al.,
2020; Marek et al., 2018; Newbold et al., 2020; Sylvester et al., 2020;
Zheng et al., 2021). By analogy, intensive acquisition of DWIs in individ-
uals could be similarly fruitful in the study of structural brain connec-
tivity. Prior studies have examined the reliability and accuracy of diffu-
sion imaging using less than 60 diffusion directions (Hasan et al., 2001;
Jones, 2004). Evaluated measures have included mean FA (Jones and
Cercignani, 2010; Lebel et al., 2012; Ni et al., 2006), tract-averaged
FA (Gordon et al., 2018; Luque Laguna et al., 2020), and capacity
to resolve crossing-fiber models (Rokem et al., 2015; Tournier et al.,
2013). Model reliability has also been evaluated using histological val-
idation (Jones et al., 2020; Kuo et al., 2008; Panagiotaki et al., 2012;
Schilling et al., 2018), in various tissue types (Alexander et al., 2001,
2019). However, it is unclear what degree of within-individual reliabil-
ity may be achieved by collecting much larger quantities of DWI data.

Therefore, we acquired repeated DWI scans over multiple sessions.
Three individuals were scanned on multiple days using the ABCD study
sequence (Casey et al., 2018). This sequence includes 103 DWIs (96 dif-
fusion encoding directions; 4 b-value shells; ~6.5 min). A total of 9 -
14 complete DWI datasets were acquired per individual. Differences in
the head position across scans contributes additional variability in an-
gular sampling for each subject. Thus, repeated scanning with the same
sequence increases both angular sampling and SNR. These repeated sam-
pling data were used to study how DWI data quantity and analysis meth-
ods impact reliability and accuracy. We pseudo-randomly sampled DWI
encodings in a manner that maintained approximately constant angu-
lar coverage (see Methods; Figure S1), to systematically evaluate how
reliability depends on angular sampling. Although earlier work has sug-
gested that 30 spatially distributed DWIs could be sufficient to estimate
a diffusion tensor (Jones, 2004), more complex models have not been
similarly tested.

Four crossing-fiber estimation methods were compared: FSL’s Bed-
postX (BPX) (Behrens et al., 2003; Jbabdi et al., 2012; Sotiropoulos et al.,
2016) uses the ball-and-sticks model and Automatic Relevance Determi-
nation (ARD) to select the number of fiber directions. The ball-and-sticks
model was separately estimated using a novel Bayesian model selec-
tion developed in our laboratory which we term Bayesian Multi-Tensor
Model selection (BaMM). The third and fourth crossing-fiber estima-
tion methods tested here were DSI Studio’s Constant Solid Angle Q-ball
Imaging (CSA-QBL; (Aganj et al., 2010; Tuch, 2004), and MRtrix3’s Con-
strained Spherical Deconvolution (CSD, (Tournier et al., 2013, 2019),
two of the currently most widely used diffusion processing packages.
As a control, we also tested two single-tensor estimation methods: lin-
ear least squares (LLS) and single-tensor Bayesian (STB) (Basser et al.,
1994a, Basser et al., 1994b; Lee et al., 2010). These six diffusion mod-
eling methods were selected as examples of differing approaches to dif-
fusion imaging (Behrens et al., 2007; Jbabdi et al., 2012; Jensen et al.,
2005; Tournier et al., 2013, 2019; Tuch, 2004; Wang et al., 2014, 2015;
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Zhang et al., 2012), but are not an exhaustive representation. Pertinent
model estimation differences may be summarized as follows: BaMM and
BPX both use a partial volume model assuming a variable number of
radially symmetric fiber compartments. BaMM incorporates a model se-
lection approach to estimate the number of fiber compartments. BPX
uses automatic relevance determination (ARD) to down-weight unnec-
essary fiber compartments. CSA-QBI is a method derived from Q-ball
numerical approximation of the water diffusion orientation distribution
function (dODF) (Aganj et al., 2010; Callaghan et al., 1988; Tuch, 2004).
The CSD method use a constrained spherical deconvolution to estimate
the fiber orientation distribution (FOD) (Dell’Acqua and Tournier, 2019;
Jeurissen et al., 2014). The accuracy and reliability of these methods
was evaluated as a function of data quantity in both real and simulated
data.

2. Methods

The organization of the present analyses is summarized in Table 1.

2.1. Voxelwise parameter estimation

We evaluated five parameter estimation methods: two methods
(Bayesian Multi-Tensor Model-Selection [BaMM] and FSL’s BedpostX
[BPX]) used the ball and sticks model (Behrens et al., 2003); the third
crossing fiber method (Constant Solid Angle Q-Ball Imaging [QBI]) used
spherical harmonics (Aganj et al., 2010); and two methods (Linear Least
Squares [LLS] and Single Tensor Bayesian [STB]) used the classic single
tensor model (Basser et al., 1994a).

2.1.1. Bayesian multi-tensor model-selection (BaMM) modeling ball and
sticks

We adapted a Bayesian model selection algorithm followed by pa-
rameter estimation of the winning model (modified from (Lee et al.,
2010)). BaMM evaluated several competing models derived from the
ball and sticks model (aka one ball vs. one ball and one stick; see Eq. (1)).
Model selection and parameter estimation used a Markov-Chain Monte
Carlo (MCMC), with Metropolis-Hastings sampling, and simulated an-
nealing. The model selection penalty was scaled based on the input data
size. Additional details on the implementation of this model are in the
Supplemental Material.

2.1.2. FSL’s BedpostX (BPX)

The ball and stick model, developed by FSL (Behrens et al., 2003), is
an alternative to the single diffusion tensor model (Behrens et al., 2003;
Jbabdi et al., 2012). BPX is a multi-compartment model, in which the
first compartment models the diffusion of free water as isotropic (ball),
and the rest of the k compartments model diffusion along several axial
fiber directions with zero diffusion in the radial direction (sticks). The
predicted diffusion signal is:

Hi = 50[(1 — Xy fi)exp(=bid) + ZkfkexP(_bid(giTxk)z)] ()]

where i indexes encoding direction and k indexes compartment. S, is
the signal with no diffusion weighting and ; is the signal with a diffu-
sion gradient applied along the unit vector g; with b-value b; on diffusion
signal d. The f, are volume fractions for each fiber compartment. Each
fiber compartment is modeled as a stick-like tensor oriented along x.
We employed FSL’s BedpostX 6.0.0 to evaluate BPX (Sotiropoulos et al.,
2016). The Bayesian parameter estimation approach uses Automatic
Relevance Determination (ARD) to down weight unnecessary fibers.
BPX estimates angles 0 and ¢ but not FA, MD, AD, or RD. Angles 6 and ¢
are estimated for every direction (indeed by k). We ran BedpostX using
the default settings unless noted otherwise: 2 fibers, weight = 1, and
burn in = 1000.
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Table 1

Summary of methods and reliability comparisons.
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Method

Linear Least Squares
(LLS)

Single Tensor
Bayesian (STB)

FSL’s BedpostX
(BPX)

Bayesian
Multi-Tensor
Model-Selection
(BaMM)

DSI’ Constant Solid
Angle Q-Ball
Imaging (CSA-QBI)

MRtrix3’s
Constrained
Spherical
Deconvolution (CSD)

Model

Simulated Single
Tensor
Simulated Two
Crossing Tensors

Simulated Three
Crossing Tensors

Human Brain

Single tensor

SNR 30, 50, 100

All three subjects

Single tensor with
Biological Priors

SNR 30, 50, 100

Sum isotropic and N
fiber compartments,
automatic relevance
detection

SNR 30, 50, 100

SNR 30, 50, 100
Fraction 50/50,
60/40, 80/20%
FA 0.6, 0.8

Angle 30°, 60°, 90°
SNR 30, 50, 100
Fraction 33/33/33,
40/34/26,
53/34/13%

FA 0.6, 0.7, 0.8
Angle 30°, 60°, 90°

Sum isotropic and N
fiber compartments,
Bayesian model
selection

SNR 30, 50, 100

SNR 30, 50, 100
Fraction 50/50,
60/40, 80/20%
FA 0.6, 0.8

Angle 30°, 60°, 90°
SNR 30, 50, 100
Fraction 33/33/33,
40/34/26,
53/34/13%

FA 0.6, 0.7, 0.8
Angle 30°, 60°, 90°

Diffusion orientation
distribution function
(dODF) with
constant solid angle

SNR 30, 50, 100

SNR 30, 50, 100
Fraction 50/50,
60/40, 80/20%
FA 0.6, 0.8

Angle 30°, 60°, 90°
SNR 30, 50, 100
Fraction 33/33/33,
40/34/26,
53/34/13%

FA 0.6, 0.7, 0.8
Angle 30°, 60°, 90°

Fiber orientation
distribution (FOD)
through constrained
spherical
deconvolution

SNR 30, 50, 100

SNR 30, 50, 100
Fraction 50/50,
60/40, 80/20%
FA 0.6, 0.8

Angle 30°, 60°, 90°
SNR 30, 50, 100
Fraction 33/33/33,
40/34/26,
53/34/13%

FA 0.6, 0.7, 0.8
Angle 30°, 60°, 90°

Reliability Map
Reliability Curve on All three subjects All three subjects All three subjects All three subjects All three subjects All three subjects
Specific ROI
A than 0.3 and with a matching antipodal peak defined as two peaks hav-

Fig. 1. Estimated Tensor and Angles

(A) Constant Solid Angle Q-Ball Imaging (QBI) reports fifteen spherical harmonic
values, from which a 3D surface is estimated. The surface is colored by the
orientation distribution function (ODF). The surface/ODF peaks are extracted
(black line) and angles ¢ and 0 estimated to match in B. (B) For Linear Least
Squares (LLS) and Single Tensor Bayesian (STB), the tensor describing Brownian
diffusion of water was calculated. Three eigenvalues are used to describe the
tensor shape. From the largest eigenvector, two angles are estimated to describe
the tensor orientation in 3D space. For Bayesian Multi-Tensor Model-Selection
(BaMM) and FSL’s BedpostX (BPX), a stick corresponding to eigenvector-1 is
estimated and its angles reported.

2.1.3. DSI studio’s constant solid angle Q-Ball imaging (CSA-QBD

Q-ball imaging is a widely used reconstruction scheme available
through DSI Studio that estimates the diffusion orientation distri-
bution function (dODF) through a spherical tomographic inversion
(Tuch, 2004). QBI was derived from g-space formalism (Callaghan et al.,
1988) and uses a Funk-Radon transform to estimate the dODF. The orig-
inal Q-ball imaging improved the dODF estimation by considering the
constant solid angle (CSA-QBI; (Aganj et al., 2010)). CSA-QBI was down-
loaded from NITRC (nitrc.org) in 2020. For ease of comparison to the
other methods (LLS, STB, BPX, BaMM, and CSD), we estimated the angle
of the peaks given by the dODF surface generated by CSA-QBI (Fig. 1A).
Peaks were selecting based on a normalized dODF probability greater

ing an absolute value dot product greater than 0.99.

2.1.4. MRtrix3’s constrained spherical deconvolution (CSD)

Constrained spherical deconvolution (CSD) is currently one of
the most cited reconstruction schemes available through MRtrix3
(Tournier et al., 2007, 2013, 2019). This method uses a constrained
spherical deconvolution to estimate the fiber orientation distribution
(FOD) and implements a regularized spherical deconvolution to decon-
volve the signal with a single fiber response function. The following MR-
trix3 functions with default settings were used unless otherwise noted:
dwi2response with default tournier flag; dwi2fod with default csd flag;
sh2peaks to extract XYZ coordinates of default top three peaks. For ease
of comparison to the other methods (LLS, STB, BaMM, BPX, and CSA-
QBI), the second and third peaks were included as a fiber direction if
their magnitude was at least 10% of the maximal peak. The XYZ coordi-
nates were then converted to spherical polar coordinates for consistency
of presentation.

2.1.5. Linear least squares (LLS)

The LLS method solves an overdetermined system of linear equations
by single value decomposition (Basser et al., 1994a; Tristan-Vega et al.,
2012). The solution yields a diffusion tensor D, which can be decom-
posed into eigenvalues (4, 4,, 43, Fig. 1B) and eigenvectors (v, v,, v3).
Derived quantities from FSL’s ‘dtifit’ are fractional anisotropy (FA), ra-
dial diffusivity (RD), axial diffusivity (AD), mean diffusivity (MD). In
addition, the orientation of the principal axis of diffusion can be charac-
terized in terms of polar angles relative to the Z-axis () and azimuthal
rotation in the XY plane (¢, Fig. 1B (Behrens et al., 2003).

2.1.6. Single tensor Bayesian estimation (STB)

We wanted to compare the LLS single tensor fit to a Bayesian esti-
mation that used biological priors and had a non-negative constraint.
The single tensor Bayesian method estimates the posterior probability
of the set of parameters, w; = (0, ¢, 4, 4,, 43,S;) in voxel j, given the
single tensor model M with relevant background information I:

P(w;|M;, T) < P(M|w;, I) P(ew;| ) 2)

The background information I is given as several priors that reflect
biological constraints: 4;, 4,, 4; were limited to between 0 and 3 mm?/s,
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the biological range of diffusion in white matter. We assumed rotational
symmetry; 1,, 13 were set equal to each other, and 6, ¢ were limited
to between 0 and = owing to the directional symmetry of the diffusion
tensor. In STB, diffusion is modeled as a tensor, M (see Eq. (3) below). To
estimate the model parameters, we used standard Monte Carlo Markov
Chain methods (Lee et al., 2010).

2.2. Simulated data

Simulated data were generated using the Gaussian tensor model
(Basser et al., 1994a, Basser et al., 1994b):

H; = Solexp(=b; - x;Rx])], (3)

where S|, is the signal with no diffusion weighting, y; is the signal with
a diffusion gradient applied along the vector x; with b-value b;, and R
is the diffusion tensor. .S, was fixed at 1000; b; and x; matched twelve
acquisitions of the ABCD sequence (Casey et al., 2018). Three cases were
simulated:

2.2.1. Single tensor

The first test case simulates highly organized white matter with a
single principal direction, as in the mid-sagittal part of the corpus cal-
losum. R was defined to have an anisotropy of 0.86, with angles # and
¢ set to 1.8 and 2.8 radians, respectively. Gaussian noise was added in-
dependently to a real and imaginary channel which were combined as
a magnitude to produce simulated data with Rician noise (Soares et al.,
2013). We specified the signal to noise ratios (SNR) of 30, 50, 100, rel-
ative to the b0 to create three data sets with varying SNR.

2.2.2. Two crossing tensors

The second test case simulates two highly organized, crossing white
matter tracts. The simulations were generated as two highly anisotropic
tensors, R, and R,. A range of possibilities was explored by varying the
SNR, tensor fraction, FA, and crossing angle of the tensors. Values were
varied as follows: SNR = 30, 50, 100; tensor fractions of equal weighting
(50%:50%) and unequal weighting (60%:40%, 70%:30%); FA = 0.6:0.6,
0.6:0.8, 0.8:0.8; crossing angle = 30°, 60°, 90°.

2.2.3. Three crossing tensors

The final test case simulates three highly organized, crossing
white matter tracts. The simulations were generated as three highly
anisotropic tensors, R;, R,, and R;. A range of possibilities was ex-
plored by varying the SNR, tensor fraction, FA, and crossing angle
of the tensors. Values were varied as follows: SNR = 30, 50, 100;
tensor fraction equal weighting (33%:33%:33%) and unequal weight-
ing (40%:34%:26%, 53%:34%:13%); FA = 0.6:0.6:0.6, 0.7:0.7:0.7,
0.8:0.8:0.8; crossing angle = 30°, 60°, 90°.

2.3. Repeatedly sampled individual-specific data

2.3.1. Participants and study design

Three individuals who participated in a study of the effects
of arm immobilization functional connectivity contributed data
(Newbold et al., 2021, 2020). Participants (25yoF, 27yoM, 35yoM) were
scanned daily for two weeks prior to an experimental intervention (uni-
lateral arm casting). Imaging was performed at a consistent hour of the
day to minimize diurnal effects. Data acquired during and after the cast-
ing period are not analyzed in this paper. Since Subject 1 (35yoM) did
not have DWI data acquired prior to the experimental intervention, he
was rescanned with the same sequence as the other subjects at later
date. The Washington University School of Medicine Institutional Re-
view Board provided experimental oversight. Participants provided in-
formed consent for all aspects of the study and were paid for their par-
ticipation.
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2.3.2. MR image acquisition

All MRI data were acquired on a Siemens 3T Prisma using a 64-
channel head coil, structural MRI was acquired at each scanning ses-
sion and included T1-weighted images (Gradient echo, 3D MP-RAGE,
sagittal, 300 slices, 0.8 mm isotropic resolution, TR/TE=2400/2.22 ms,
TI=1000 ms, flip angle = 8°), and T2-weighted images (Spin
echo, 3D T2-SPC, sagittal, 300 slices, 0.8 mm isotropic resolution,
TR/TE=3200/563 ms) (Newbold et al., 2021, 2020).

Daily scans used the ABCD diffusion sequence, a single-shot echo pla-
nar diffusion-weighted MRI with the following sequence parameters: 75
contiguous axial slices, 2 mm isotropic resolution, TR/TE 3500/83 ms,
four shells (b-values 250, 500, 1000, and 1500s/mm?). This sequence
includes 103 vol and 96 encoding directions (Casey et al., 2018). Ac-
quisition time per scan was 6.5 min, and a single acquisition was col-
lected on each scan day. Total DWI scans (distributed across scanning
sessions) for the three subjects were 9, 12, and 14, resulting in a total of
864, 1152, and 1440 total encoding directions, respectively. Two field
maps (AP and PA) were acquired with the same settings as the diffusion
weighted data for subsequent processing.

Subject 1 was also scanned using a custom set of diffusion gradients,
with all other ABCD sequence parameters kept the same. This scan is
referred to as the single session high angular resolution (SS-HAR) scan.
The sequence parameters were as follows: 75 contiguous axial slices,
2 mm isotropic resolution, TR/TE 3500/83 ms, four shells (b-values
250, 500, 1000, and 1500s/mm?2), 1020 vol with 960 unique encoding
directions. Acquisition time was 1 hr. Two b0 acquisitions with reverse
phase-encoding direction (AP and PA) were acquired with the same set-
tings as the diffusion weighted data for estimation of the field map.

2.3.3. DWI processing

We applied FSL’s Eddy current correction and top-up (Andersson and
Sotiropoulos, 2016; Smith et al., 2004) to each DWI acquisition. During
eddy correction, FSL calculated total movement of each DWI relative
to the first volume. We excluded volumes with framewise displacement
greater than 0.5 mm (Baum et al., 2018). The mean and standard de-
viation of displacement in millimeters relative to the prior volume for
each subject were: 0.24 and 0.13 for Subject 1; 0.29 and 0.19 for Sub-
ject 2; and 0.38 and 0.23 for Subject 3. Each DWI acquisition was affine
registered to the participant’s structural T1 data, and gradient vectors
were transformed accordingly before concatenating all diffusion data
within an individual. Diffusion tensor maps were computed using FSL’s
tool DTIFIT (Jenkinson et al., 2012). FSL’s eddy correction also gener-
ates rotation corrected b-vectors used in the subsequent processing (STB,
BaMM, BPX, CSA-QBI, CSD).

2.3.4. Creation of reliability curves using permutation resampling

Model estimation with permutation subsampling was used to quan-
titatively estimate modeled parameter variability. This approach was
used for both simulated data and real human data. All available DWI vol-
umes acquired across 9-14 scanning sessions were concatenated. Sub-
samples covered the shell surface approximately evenly (Fig. 2A). Solid
angle sectors were defined by dividing the shell into sixteen bidirec-
tional groups (Fig. 2B). The XY-plane was divided into four quadrants
and polar angle (9) was divided into four intervals equating arclength.
For each permutation, we pseudo-randomly sampled DWI encodings in a
manner that maintained approximately constant angular coverage (Fig-
ure S1).

For all exemplar parameter estimation methods (BaMM, BPX, QBI,
LLS, STB), we compared the estimation of relevant modeled diffusion pa-
rameters ({0, ¢} for all models, {FA, AD, RD, MD} for relevant subset)
over the range N = 10:1000, in approximately logarithmically spaced
increments. Specifically, we used a step size of 10 for values of N be-
low or equal to 200, then a step size of 20 for values of N between
200 and 300, a step size of 40 for values of N between 300 and 500,
and a step size of 50 for values between 500 and 1000. DWI volumes
were quasi-randomly selected according to the above-described scheme.
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Fig. 2. B-Vector selection

Subjects were scanned every day for two weeks, with 96 unique B-vector direc-
tions acquired each scan. A) All 1152 B-Vectors from the daily scans plotted on
a single sphere. B) B-Vectors were subdivided by their position on the sphere
into 16 groups of equal surface area, 4 of which are shown. Encodings were
pseudo-randomly selected from the 16 groups to obtain approximately uniform
angular sampling over the sphere.

These steps were repeated over 1000 permutations at each subsampling
size. For single tensor shape diffusion parameters {FA, AD, RD, MD},
the parameter estimate variability was defined as

ey = ((x; = xr) )P ar @)

Where x; represents a parameter estimate {FA, AD, RD, MD} obtained
from a single permutation; y; is the ground truth as specified when gen-
erating the tensors in the simulations, or the estimated value obtained
when using all available human neuroimaging data; the bracket denotes
mean over permutations. ¢, was plotted as a function of sample size
(N), creating reliability curves for each parameter.

Since diffusion is estimated as a bipolar tensor that is symmetric
around the origin, the error estimation for angles 6, ¢ was modified
accordingly to account for modulus pi.

2.3.5. Mean error threshold whole brain maps

To generate a voxel-wise heatmap visualizing the threshold sample
size N needed to reach a mean error less than 5% for each voxel, we
conducted the permutation testing described above on every voxel of
the brain using the LLS method. The mean error was calculated for each
voxel at each value of N. A heatmap was created for each diffusion
metric, such that voxels are colored by the number of measurements
needed to reach a mean error < 5%.

3. Results

3.1. Single tensor simulations: BaMM and CSD detect a single fiber more
accurately than BPX or CSA-QBI

Some regions of the brain, such as the corpus callosum, have a single
dominant fiber direction. Thus, we first tested diffusion imaging meth-
ods with simulated single tensor fiber data. To evaluate the accuracy
and reliability of diffusion metrics, we used permutation subsampling
of the simulated diffusion data to estimate parameter variability for all
crossing fiber models (BaMM [Bayesian Multi-tensor Model-selection],
BPX [BedpostX], CSA-QBI [Constant Solid Angle Q-Ball Imaging], CSD
[Constrained Spherical Deconvolution]) and single tensor methods (LLS
[Linear Least Squares], STB [Single Tensor Bayesian]). We plotted the
estimated radian value of the fiber (or tensor) angles (¢, 6) to highlight
the number of fibers estimated at each DWI sample size. Open circles
represent the results of individual permutations and are colored accord-
ing to the number of fibers estimated (Fig. 3).

Multiple SNR values were tested to track the effect of SNR on reliabil-
ity and accuracy. The forward-modeled parameter space for simulated
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single tensors was: SNR 50 (Fig. 3), 30, and 100 (Figure S2 for BaMM,
BPX, CSA-QBI and CSD, and S3 for LLS and STB). Initially, default set-
tings were used for all modeling schemes: BaMM, CSA-QBI and CSD up
to three fibers; BPX two fibers (for same analyses using BPX with other
settings see Figure S4).

BaMM accurately estimated the orientation of the single forward
modeled principal eigenvector, even with limited quantities of data (>
20 DWI samples; blue/sky blue symbols Fig. 3A, S2).

BPX generally falsely estimated two fibers (69% of permutations at
DWI = 10, at least 90% of permutations at DWI > 120), even when given
large quantities of data (Fig. 3B, S2). At DWI < 200, the angle of the
second fiber was broadly distributed over the interval O to z (green/olive
symbols Fig. 3B). At DWI > 400, BPX continued to estimate two fibers
separated by a small angle, the mean of which closely approximated the
single modeled principal eigenvector. When the max number of fibers
was increased to 3 (default 2), BPX falsely estimated three fibers in the
majority of permutations (39% of permutations at DWI = 10, linearly
increasing to 88% of permutations at DWI = 1000; Figure S4).

QBI estimated one, two or three fibers given different numbers of
DWI (Fig. 3C, S2). At < 90 DWI, QBI was most likely to estimate three
fibers that were broadly distributed over the interval 0 to z, and also
frequently estimated one or two; at 10 DWI, 90% of permutations es-
timated three fibers, 10% estimated two. By 80 DWI, 47%, 42%, and
11% of permutations estimated three, two, and one fiber, respectively.
Unlike BPX, QBI consistently and accurately estimated a single fiber at
higher DWI quantities (300 DWI: 12%, 31%, and 57% of permutations
estimated three, two, and one fiber, respectively). Over 90% of QBI per-
mutations estimated a single fiber at > 460 DWI.

CSD also accurately estimated the orientation of the single forward
modeled principal eigenvector with limited quantities of data (> 20 DWI
samples; Fig. 3D).

Mean measurement error was calculated relative to the forward-
modeled angle or shape metric, to quantify the accuracy of each method
as a function of the number of diffusion measurements (Figure S2-3,
Eq. (4)). For BaMM and CSD, error linearly decreased with increasing
subsampling size. In contrast, for BPX a linear decrease of error with
increasing subsampling measurements was detected only for the sec-
ondary fiber but not the primary fiber. QBI’s error decreased with in-
creasing subsampling sizes only for the primary fiber, while the second
and third fiber had very high errors.

We also evaluated the accuracy of the single tensor methods LLS and
STB on simulated single tensor data. As expected and similar to BaMM
and CSD, LLS and STB estimation of FA, AD, RD, MD, and angles ¢ and
0 improved with increasing number of diffusion measurements (Figure
S3).

3.2. Two tensor simulations: BaMM is robust against overfitting

Next, we simulated two crossing fibers, as within the crossing of the
superior longitudinal and uncinate fasciculi (Figs. 4, S5-8). We explored
the following forward-modeled parameter space: fiber crossing angle
(30°, 60°, 90°), relative weight of fiber compartments (50/50, 60/40,
70/30), SNR (30, 50, 100), and FA of tensors (0.6/0.6, 0.6/0.8, 0.8/0.8).
The parameter space was chosen to explore fiber orientation, relative
size of fiber compartments, SNR, and the respective FA of the fiber com-
partments. Fig. 4 shows the results of 90° crossing angle, 60/40 relative
weight, SNR 50, and FA of 0.8/0.8. Results corresponding to the full pa-
rameter space are reported in the Supplemental Figures (Figures S5-8,
BaMM, BPX, CSA-QBI, and CSD respectively). Results were consistent
across the parameter space, with slight variations in the subsampling
size needed to reach specific error thresholds. Single tensor models (LLS
and STB) estimated the two crossing fibers as a weighted average and
the single tensor’s principal eigenvector, which reflects the inaccurate
shape assumption (Figure S9). Again, default settings were used for all
modeling schemes: BaMM, CSA-QBI, and CSD up to three fibers; BPX



N.A. Seider, B. Adeyemo, R. Miller et al.

A Bayesian Multi-Tensor Model-Selection (BaMM)

® ¢]
3w=/4 ‘
2
.c_a =2 T
T
]
o
=4
00 200 400 600 800 1000
# DWI #Fibers|1| 2 | 3
. ¢ angles |0 |00 |000
B FSL's BedpostX (BPX) Bangles |00

M
WM

400 600 800 1000

# DWI

o 200

C DSI's Constant Solid Angle Q-Ball Imaging (CSA-QBI)

i

go° &

HiH s

.r-‘.H-}-'-!-I-!-G—I—-I—-I--&-c

Radians

o 200 M;O Sl;tl 8(‘10 10.00
# DWI
D MRtrix3's Constrained Spherical Deconvolution (CSD)
" h'm‘-.."-.—.ﬂ’-.-.-..'“’_’_._.
3n/4
(%) 3
C POPRD- 9-8 -8 B O O B w8 = B = e O B e = O
©
'.6 "’2,
©
o
w4 f
1]

400 600 800 1000

# DWI

o 200

Neurolmage 254 (2022) 119138

Fig. 3. Accuracy of Diffusion Measures: Simulated Sin-
gle Tensor

(A) /0 angle estimations by Bayesian Multi-tensor
Model-selection (BaMM). Open circles represent the
results obtained by repeated permutation sampling.
Same color legend for all data panels. Permutations
that resulted in a single fiber direction are plotted in
blue/sky blue (¢/6). Permutations that resulted in two
fibers are plotted in red/pink (¢/0) and green/olive
(@/6). Permutations that resulted in three fibers are
plotted in purple/lilac (¢/6), orange/salmon (¢/0),
and teal/cyan (¢/6). (B) FSL’s BedpostX (BPX). (C)
Constant Solid Angle Q-Ball Imaging (CSA-QBI). (D)
Constrained Spherical Deconvolution (CSD).
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Fig. 4. Accuracy of diffusion measures: simulated two
crossing tensors

The tensors were oriented such that they were per-
pendicular to each other. The first tensor had larger
weighting equal to 60% of the signal. Rician noise was
added for an SNR = 50. (A) ¢/0 angle estimations by
Bayesian Multi-tensor Model-selection (BaMM). Open
circles represent the results obtained by repeated per-
mutation sampling. Same color legend for all data pan-
els. Permutations that resulted in a single fiber di-
rection are plotted in blue/sky blue (¢/6). Permuta-
tions that resulted in two fibers are plotted in red/pink
(p/0) and green/olive (¢/0). Permutations that re-
sulted in three fibers are plotted in purple/lilac (¢/0),
orange/salmon (¢/6), and teal/cyan (¢/6). (B) FSL’s
BedpostX (BPX). (C) Constant Solid Angle Q-Ball Imag-
ing (CSA-QBI). (D) Constrained Spherical Deconvolu-
tion (CSD).
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two fibers (for same analyses of BPX using max 3-fiber settings see Fig-
ure S10).

BaMM consistently and correctly estimated two fibers for > 30 DWI
(red/pink and green/olive symbols Fig. 4A, full parameter space in Fig-
ure S5).

BPX estimated two fibers at all but the smallest subsampling size
(DWI = 10; Fig. 4B, S6) when using default settings. When we increased
BPX’s maximum allowable number of fibers to 3 (Figure S9), BPX fre-
quently estimated three fibers for all DWI subsamplings with consis-
tently increased angular error.

For simulated two tensor data, similar to single tensor data, QBI
also incorrectly estimated three fibers at DWI < 150 (Fig. 4C, S7). Even
though two fiber directions were most commonly found at higher sam-
pling density, some permutations still demonstrated three fiber direc-
tions at all subsampling sizes (62% at 100 DWI, 44% at 300 DWI, 33%
at 500 DWI, 14% at 800 DWI).

CSD most frequently estimated two fibers for all sample sizes. With
insufficient data (< 50 DWI) some permutations estimated one or three
fiber directions (at 40 DWI, 9% estimated 1 direction and 9% estimated
3 directions). With larger data quantity (> 460 DWI), at least 10% of
permutations estimated a third fiber direction.

3.3. Three tensor simulations: accurate estimates achieved with fewest
DWIs using BaMM

The final simulation was of three crossing tensors, as in crowded
areas of deep white matter, where the thalamic radiation, longitu-
dinal tracts, and commissural tracts all cross. We explored the fol-
lowing forward-modeled parameter space: fiber crossing angle (30°,
60°, 90°), relative weight of fiber compartments (33/33/33, 26/34/40,
13/34/53), SNR (30, 50, 100), and FA of tensors (0.6/0.6/0.6,
0.7/0.7/0.7, 0.8/0.8/0.8). Fig. 5 shows the results of 90° crossing an-
gle, 40/34/26 relative weight, SNR 50, and FA of 0.8/0.8/0.8. Results
corresponding to the full parameter space are reported in the Supple-
ment (Figures S11-14, BaMM, BPX, CSA-QBI, and CSD respectively).
Results were consistent across most of the parameter space. All meth-
ods showed the lowest accuracy for the narrowest crossing fiber angle
(307).

BaMM consistently estimated three fiber compartments with suffi-
cient data (DWI > 200, Fig. 5A, S11). We increased BPX’s max possible
fibers to 3 to match the simulated data, and then BPX estimated three
fiber compartments at all subsampling sizes (Fig. 5B, S12). As with prior
modeling, BaMM and BPX correctly determined there were three fiber
compartments and accurately estimated ¢ and 0 for the three fibers with
increasing sampling density.

QBI most frequently estimated three fiber directions at all sampling
densities, yet often estimated one or two fibers < 500 DWI (Fig. 5C,
S13).

For the base simulation set (90° crossing angle, 40/34/26 relative
weight, SNR 50, and FA of 0.8/0.8/0.8), CSD consistently estimated
three fiber directions with > 200 DWI and demonstrated increasing ac-
curacy with increasing sampling density (Fig. 5D). The number of esti-
mated fiber directions was less consistent for CSD than the other meth-
ods evaluated here, with varying number of fiber directions given slight
changes in the simulation parameter set (Figure S14).

For the entire parameter space of the three tensor simulations, BaMM
and BPX log errors decreased almost linearly with an increase in the
number of diffusion measurements (Figure S11-12). QBI (Figures S13)
approached the expected relationship between log error and sample size
once three fiber directions were consistently estimated (> 500 DWI), yet
still had higher error than all other methods at the largest subsampling
sizes. CSD generally showed a linear relationship between log error and
sample size when three fiber directions were estimated (Figure S14), but
accuracy varied when fewer fiber directions were estimated.
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3.4. Whole brain reliability mapping reveals very high data requirements in
gray matter

To test reliability of diffusion metrics in human data (highly sam-
pled, three participants), we used permutation subsampling of all avail-
able data to estimate whole-brain parameter variability (FA, RD, AD,
MD, ¢, 0), using the Linear Least Squares (LLS) method. LLS was used
because none of the other methods were computationally tractable for
whole brain analyses of this type, and whole brain reliability maps were
desired to help identify anatomically defined regions of interest (ROISs).
Fig. 6 shows the number of DWIs required to reach a mean error (RMSE)
< 5% at each voxel in Subject 2 (Subject 1 and 3 shown in Figure S15).
Subject 2 was chosen as the exemplar because they had the relatively
best LLS reliability, (single slice inter-subject comparison in Figure S16).
Error is now reported as the deviation from the mean when using the
full sample (Eq. (4)) rather than relative to the ground truth as in the
prior simulations. AD, RD, and MD had less measurement error than FA
and the angles ¢ and 6 across most of the brain. In parts of the cor-
pus callosum, only 20 DWIs were required for an FA RMSE < 5%. For
most deep white matter voxels (e.g., corticospinal tracts, frontal cross-
ing tracts), about 100 DWI samples were sufficient for an FA RMSE <
5%. In comparison, gray matter voxels required 300-500 measurements
to reach an FA RMSE < 5%.

3.5. Corpus callosum: only BaMM estimates single fiber < 600 DWIs

To examine individual-specific diffusion metric reliability with
highly sampled data, across methods, several ROIs were selected based
on the whole-brain, voxel-wise LLS reliability maps (Fig. 6 and S15-16)
and prior anatomical knowledge. Fig. 7 shows diffusion estimates in a
voxel of the corpus callosum exemplifying highly anisotropic diffusion
(Fig. 7A; MNI: —1, 22, 9; Subject 2). This ROI in Subject 2 with BPX max
3 fibers is shown in Figure S17. Permutation results for Subject 1 and
3 are in Figures S18-19, respectively. This corpus callosum ROI was
chosen because it is strongly expected to contain only a single white
matter fiber direction. Reliability curves for all methods and subjects
(including LLS and STB) are shown in Figure S20. As in the simulated
single tensor data, these single tensor estimation methods showed low
error rates (now reflecting reliability rather than accuracy), even for low
DWI numbers.

BaMM estimated only a single fiber in the corpus callosum (Fig. 7B),
regardless of the number of DWIs in the subsample, with angles ¢ and
0 closely matching the results observed with single tensor methods (see
Fig. 3, $2-3).

In contrast, BPX consistently estimated two fibers in the corpus callo-
sum across all numbers of DWIs for the default setting of two fibers max
(Fig. 7C). Figure S17 shows that when BPX’s max fiber number was in-
creased to three it started to estimate three fibers in the corpus callosum
for higher numbers of DWIs. The BPX principal fiber (red/pink) gener-
ally matched the orientation obtained with BaMM, CSA-QBI, and CSD
(Fig. 7). At low sampling density, the angle of the second fiber estimated
by BPX was broadly distributed over the interval 0 to z (green/olive).
For DWI counts > 400, BPX continued to estimate two fibers, the average
of which matched the orientation found by the other methods.

Similar to the simulated data, CSA-QBI estimated three fibers for
subsamples with ( 200 DWI, two fibers < 400 DWI, and a single fiber for )
400 DWI (Fig. 7D). For subsamples with ( 200 DWI, CSA-QBI was most
likely to estimate three fibers that were broadly distributed over the
interval O to z, and also frequently estimated one or two fibers. Unlike
BPX, CSA-QBI consistently and accurately estimated a single fiber for
Y 400 DWI. The existing anatomical priors about the corpus callosum
would suggest a single primary diffusion direction, matching BaMM’s
results at all subsampling sizes and CSA-QBI’s with ~1000 DWIs.

CSD predominantly estimated a single fiber direction across all sub-
sample sizes (Fig. 7E). A subset of permutations estimated a second fiber
direction, and the proportion of permutations with a second fiber direc-
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Fig. 5. Accuracy of diffusion measures in simulated
three crossing tensor data

The tensors were oriented such that they were perpen-
dicular to each other. The tensors had weighting equal
to 40%, 34%, and 26% of the signal. Rician noise was
added for an SNR = 50. (A) ¢/0 angle estimations by
Bayesian Multi-tensor Model-selection (BaMM). Open
circles represent the results obtained by repeated per-
mutation sampling. Same color legend for all data pan-
els. Permutations that resulted in a single fiber di-
rection are plotted in blue/sky blue (¢/6). Permuta-
tions that resulted in two fibers are plotted in red/pink
(p/0) and green/olive (¢/0). Permutations that re-
sulted in three fibers are plotted in purple/lilac (¢/0),
orange/salmon (¢/6), and teal/cyan (¢/6). (B) FSL’s
BedpostX (BPX). (C) Constant Solid Angle Q-Ball Imag-
ing (CSA-QBI). (D) Constrained Spherical Deconvolu-
tion (CSD).
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DWI for Mean Error <5%

Fig. 6. Whole-brain DTI reliability map (linear least squares) for mean error < 5% (Subject 2)
(A) The color scale shows the number of DWI measurements needed to achieve a voxel-wise error less than 5% in FA. Error is calculated relative to the mean FA
found using the entire sample. Results for (B) RD, (C) AD, (D) MD, and (E) angle ¢ are shown. Subjects 1 and 3 are shown in Figure S15, all subjects shown in S16.

tion decreased with increasing sample size (<10% with > 20 DWI, (5%
with ) 300 DWI).

3.6. Left frontal white matter: BPX with two fiber default setting reliable
with fewest DWIs

We next selected a voxel in the left frontal lobe (MNI —18, 22, 26)
where the superior longitudinal fasciculus and the uncinate fasciculus
cross (Fig. 8A). This voxel was chosen to be > 10 mm from any gray
matter voxel in all three subjects. This ROI in Subject 2 with BPX max 3
fibers is shown in Figure S21, and Subjects 1 and 3 in Figures $22-23,
respectively. Reliability curves for all methods and subjects are shown
in Figure S24. The single tensor models are inadequate to describe the
full microstructural complexity, and increased error can be observed in
Figure S20 vs. Figure S24.

Fig. 8B-E contrasts the angle measurement reliability of the crossing
fibers models (BaMM, BPX, CSA-QBI, and CSD). For very low numbers
of DWI per subsample (< 50), BaMM identified the principal diffusion
direction, whereas BPX returned approximately uniform density of dif-
fusion directions at all angles (i.e., little to no angular information).
BaMM consistently estimated two diffusion directions with > 100 DWI.
BPX consistently estimated two directions with > 20 DWI. Angular mea-

10

surement error was generally less with BPX than BaMM, but comparable
for > 250 DWI. When BPX max fiber count was increased to 3 (Figure
$20), BPX estimated three fibers with > 250 DWI, and angular measure-
ment error increased for all sample sizes.

CSA-QBI most frequently estimated three fiber directions at all sub-
sampling sizes, but also frequently estimated one or two fibers. The CSA-
QBI estimation of two or three fibers was broadly distributed over 0 to =
for < 500 DWI, and the error improved only marginally with increasing
DWIs.

CSD also frequently estimated three fiber directions with < 30 DWI
and with > 300, <800 DWI. When CSD estimated two fiber directions,
the angle estimations matched that of BaMM and BPX.

3.7. Right corticospinal tract: poor reliability and non-converging fiber
count

The third ROI we analyzed in depth was in the right corticospinal
tract (CST) as it progressed through/near the internal capsule, a brain
region with potentially three crossing fibers (MNI 22, —19, 11; Figure
S25A). Based on anatomical priors, model sensitivity, registration to
MNI coordinates, and accuracy of ROI location across subjects, we could
expect a single fiber direction reflecting the CST, two fiber directions for
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Fig. 7. Reliability of diffusion measures in the genu of the
corpus callosum (subject 2)

(A) The locus of the analyzed voxel (MNI: 1, 22, 9) is marked
with a circle. Linear Least Squares (LLS) FA reliability map as
in Fig. 6A. (B) ¢/6 angle estimations by Bayesian Multi-tensor
Model-selection (BaMM). (C) FSL’s BedpostX (BPX). (D) Con-
stant Solid Angle Q-Ball Imaging (CSA-QBI). (E) Constrained
Spherical Deconvolution (CSD). Subject 1 and 3 in Figures
S18-19, respectively.
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Fig. 8. Reliability of diffusion measures in left frontal region (Subject 2)

(A) The locus of the analyzed voxel (MNI: 18, 22, 26) is marked with a circle. Lin-
ear Least Squares (LLS) FA reliability map as in Fig. 6A (B) ¢/6 angle estimations
by Bayesian Multi-tensor Model-selection (BaMM). (C) FSL’s BedpostX (BPX).
(D) Constant Solid Angle Q-Ball Imaging (CSA-QBI). (E) Constrained Spherical
Deconvolution (CSD). Subject 1 and 3 in Figures S22-23, respectively.

the CST and internal capsule, or three directions for a fanning behavior
of either the CST or internal capsule fibers. BPX settings were set to a
maximum of three fibers accordingly. Results for Subjects 1 and 3 are
in Figures S26-27, respectively. Reliability curves for all methods and
subjects (including LLS and STB) are shown in Figure S28

BaMM, CSA-QBI, and CSD estimated varying number of fibers with
different sample sizes, while BPX estimated three fibers with almost uni-
form angular distribution of ¢ and 6 from O to x. Estimated error (rel-

12
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ative to the mean angle orientation estimated by that method using all
available data) improved with increasing number of DWI for all meth-
ods. However, since the models diverged in their estimation of number
of fibers and the orientation of those fibers, we can only speak to the
reliability of the models relative to themselves and not their accuracy.

3.8. Repeated ABCD scans as reliable as single session high angular
resolution scan

In response to the concern that repeated ABCD scans increased angu-
lar sampling in random rather than controlled fashion, we collected sin-
gle session high angular resolution (SS-HAR) data. The sequence repli-
cated the ABCD scan used previously and replaced the 96-direction vec-
tor set with a 960-direction vector set. Subject 1 was rescanned using
this sequence that had a total of 1020 DWI, replicating the ratio of diffu-
sion weighted volumes to b0 images in the original sequence. All meth-
ods generally replicated trends observed previously (Figure $29), with
equivalent reliability when comparing the single scan and repeated sam-
pling approaches.

4. Discussion

Identifying and understanding inter-individual differences in brain
organization is critically important for neuroscience, neurology, neu-
rosurgery, and psychiatry (Fair et al., 2021; Gordon et al., 2017;
Gratton et al., 2020; Mitchell et al., 2013). While almost all typi-
cally developing individuals share the same major white matter bun-
dles (Mori et al., 2005), variations in size, position, and/or orientation
of white matter fibers could have significant effects on surgical plans
(Luque Laguna et al., 2020; Roland et al., 2021), and recovery from
brain injury (Laumann et al., 2021).

4.1. Reliability and limited accuracy of classic single tensor fitting (LLS,
STB)

In both highly sampled human and simulated data, single tensor es-
timate variability (LLS, STB) decreased with increasing sample size. As-
suming a normal distribution, measurement error should be inversely
related to the square root of the sample size (e.g., DWI directions in this
context). Our results failed to follow this pattern under two conditions:
when there were insufficient data to constrain the model (e.g., < 20 DWI
directions for LLS and STB), or when the model misrepresented the un-
derlying diffusion process (i.e., using single tensor methods for multiple
fibers, or assuming excess fibers for a single fiber direction). Overall,
deep white matter voxels showed lower measurement error than the
rest of the brain, and larger data amounts were needed for voxels with
lower FA (Fig. 6). FA measurement error was < 5% with 70-150 DWIs
in deep white matter, while cortical voxels required 300-500 DWIs to
comparably reduce error. Angles ¢ and 0, which are critical for track-
ing applications, showed the highest measurement error of all the diffu-
sion metrics. Uncertainty in the angle of the tensor is related to uncer-
tainty in anisotropy, explaining why angle error is higher in gray matter
(Jones and Cercignani, 2010).

The accuracy of single-tensor modeling in regions of crossing fibers
is inherently limited because the model cannot accurately represent the
underlying diffusion process. Improved accuracy can be achieved with
more complex models. Yet, more complex models increase the likeli-
hood of over fitting and thus require additional testing and validation
to ensure that biases inaccurate assumptions are avoided.

4.2. BaMM: a novel estimation method for preventing overfitting of
diffusion data

Bayesian methods provide a useful approach for this type of problem
by incorporating model selection in the analysis, which minimizes the
risk of over fitting by incorporating a penalty against models that use
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an excessive number of parameters. The Bayesian Multi-tensor Model-
selection (BaMM) method was designed in accordance with this prin-
ciple. The BaMM parameter estimation algorithm is based on previ-
ous Bayesian, model-selection methods (Bretthorst, 1990). We designed
BaMM to compare multiple diffusion models and select the model best
suited for the available data. Here, we demonstrate that BaMM can accu-
rately estimate zero, one, two, or three sticks, and that its precision im-
proves with increasing DWI data. In the current implementation, BaMM
uses the same assumed model as BPX (ball-and-sticks; (Behrens et al.,
2003)) but can accommodate a large input data set by scaling the pa-
rameter estimation penalties to the dataset size. We tested and validated
BaMM over a wide range of diffusion measurements (10 to 1000) to
rule out bias for a specific number of DWIs. The current work was com-
pleted using a ball- and- sticks partial volumes model, but BaMM can
also accommodate full multi-tensor models, multi-fiber kurtosis models,
or other models yet to be developed (Chiang et al., 2019; Wang et al.,
2014). The BaMM framework is adaptable to any set of mathematical
assumptions about white matter structure and can serve to directly com-
pare different diffusion models against the available data.

4.3. BPX: accurate and reliable only if assumptions are met

BPX was in the past one of the most popular schemes for probabilistic
tracking. BPX was initially published with 30 direction DWI data, and
then with 60 direction DWI data (Jbabdi et al., 2012; Sotiropoulos et al.,
2013). The datasets analyzed here contained much higher quantities of
data (800+ direction low-motion DWISs for each individual). With an ex-
cess of DWIs, we observed that BPX consistently estimates the maximum
allowed number of fibers. BPX’s default setting is a maximum of two
fibers, and with these settings BPX estimated two fibers for simulated
single tensor data (Fig. 3) and for the corpus callosum (Fig. 7). When set
to allow for a maximum of three tensors, BPX estimated three fibers in
simulated single tensor data and in the corpus callosum ROI (Figure S4
and S17). When provided with large data sets (> 500 DWI), BPX tends
to split a single tensor into two that are almost superimposed. This is in-
accurate but likely not detrimental to subsequent tractography. By con-
trast, a potentially inappropriately oriented second or third fiber, could
substantially deviate probabilistic tracking (Fig 9C-D). When BPX’s as-
sumptions are met, it is accurate and reliable from 10 to 1000 DWIs, but
determining the appropriate priors for all brain voxels poses a signifi-
cant challenge.

4.4. CSA-QBI: accurate only with very large amounts of diffusion data

Constant solid angle Q-Ball Imaging (CSA-QBI) was designed to elim-
inate diffusion tensor shape assumptions. CSA-QBI is a method derived
from g-space formalism (Callaghan et al., 1988) and uses a Funk-Radon
transform to estimate the ODF (Aganj et al., 2010; Tuch, 2004). CSA-QBI
can estimate one, two or three tensors with 1000 DWIs, but problemat-
ically, the reliability of these estimates always remained low (Fig 3-5,
7-9). With < 800 DWIs QBI tends to model additional fiber directions,
possibly capturing noise in the data. CSA-QBI requires many more DWI
than what is currently being acquired in a clinical or research setting.

4.5. CSD improved fiber ODF estimation with sufficient data

Constrained Spherical Deconvolution (CSD) from the imaging pack-
age MRtrix3 (Tournier et al., 2019) is another method that uses spher-
ical harmonic deconvolution. In contrast to CSA-QBI, CSD uses a con-
strained spherical deconvolution to estimate the fiber ODF. CSD demon-
strated greater reliability with smaller sampling density than CSA-QBI.
Yet a subset of permutations often estimated excess fiber directions. The
ABCD acquisition scheme (Casey et al., 2018) used in the current anal-
yses achieves high angular resolution diffusion imaging, yet CSD often
necessitated larger quantities of DWI for consistent fiber direction esti-
mation. In aggregate, the results of the present CSA-QBI and CSD testing
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suggest that precise and reliable fiber estimation may require greater
quantities of data than are typically obtained.

4.6. Overfitting and prior dependence of multi-fiber diffusion imaging
methods

The last twenty years of diffusion imaging research have gen-
erated a steady progression of new and increasingly complex mod-
els (Aganj et al., 2010; Behrens et al., 2003; Jbabdi et al., 2012;
Tournier et al., 2007, 2013; Tuch, 2004; Wang et al., 2014). The most
novel and potentially exciting methodologies may have outstripped the
conventionally acquired quantity of data needed to constrain the model.
In the current work, we tested a broad distribution of the most widely
cited methodologies and parameter estimation approaches: the classic
diffusion tensor model that endures due to its simplicity (Basser et al.,
1994a, Basser et al., 1994b; Pierpaoli et al., 1996); FSL’s BedpostX that
popularized the ball and stick model, which simplifies shape assump-
tions (Behrens et al., 2007, 2003; Jbabdi et al., 2012; Jenkinson et al.,
2012); DSI Studio’s Constant Solid-Angle Q-Ball Imaging which was de-
rived from g-space formalism (Callaghan et al., 1988) and estimates the
ODF (Aganj et al., 2010; Tuch, 2004); and finally MRtrix3’s Constrained
Spherical Deconvolution that estimates the fiber ODF (Tournier et al.,
2007, 2013, 2019). While this list is not exhaustive and novel methods
will continue to be developed, the models tested here similarly share
a sensitivity to inappropriate priors and vulnerability to overfitting.
Under-recognition of this point may underlie an emphasis on complex
models and a relative under-emphasis on the quantity and quality of
DWI data needed to achieve accurate fiber estimation.

4.7. High angular resolution diffusion data acquisition

In comparison to the repeated sample acquisitions, we also collected
supplementary DWI data with 960 unique B-vectors and 50 b0 applied
(1020 DWI). Of the methods tested in the current work, none of them
improved with single-scan high angular resolution data, although CSD
performed equally well with both data acquisition schemes (Figure S29).
Instead, it appears that repeated acquisitions of ABCD’s 103 DWI proto-
col were potentially less prone to overfitting. Combining DWI samples
over multiple sessions introduces jitter owing to variability of head po-
sition and effectively improves angular sampling.

4.7. Precision diffusion imaging is achievable with practical data
acquisition times

Only 15 to 30 DWIs are typically acquired in clinical settings. As
MRI hardware and processing software improved, researchers started to
acquire larger diffusion data sets (100 - 300 DWIs per subject) while
maintaining reasonable imaging times (<20 min). Our study demon-
strated that one can reliably estimate the shape and orientation of a
single diffusion tensor in deep white matter with about 100 diffusion
measurements. Thus, researchers (Casey et al., 2018; Paquette et al.,
2016; Van Essen et al., 2012) as well as clinicians ones should consider
collecting a greater number of DWIs (at least ~100) than has been typ-
ical.

For crossing-fiber diffusion models, at least 300 DWIs are generally
required in deep white matter, assuming high data quality. To advance
from 100 to 300 DWI requires an increase in total scan time from about
6 min to about 20 min. Acquiring 1000 DWIs with current technology
takes a little over an hour. An hour- long diffusion scan may be war-
ranted for precision mapping for research or in neurosurgical planning
(Conti Nibali et al., 2019). Diffusion data acquisition is typically better
tolerated than task or resting state functional MRI (fMRI) because the pa-
tient can sleep or watch a movie during the scan. Therefore, additional
investment in scanning time could have significant positive effects on
diagnostics and treatment of neurological and neurosurgical patients.
In addition, acquiring greater amounts of high-quality DWI data would
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expand the available processing schemes beyond the models described
here to methodologies which require even more data (e.g., DSI, DBSI)
(Paquette et al., 2016; Wang et al., 2015).

4.8. Structural connectivity maps (end-to-end tracking) in cortex

Researchers have been exploring the feasibility and validity of MRI-
based structural connectivity analyses for decades (Baum et al., 2018;
Maier-Hein et al., 2017; Messaritaki et al., 2019; Pestilli et al., 2014;
Roine et al., 2019; Satterthwaite et al., 2013; Sotiropoulos and Za-
lesky, 2019; Yeh et al., 2018). Many studies that attempt to build struc-
tural connectivity maps initiate the fiber tracking at the border of gray
and white matter. Since FA and angle orientations (¢ and 0; Fig. 6, S13)
are less reliable closer to gray matter, more errors are introduced at initi-
ation of the tracking. Although many other challenges to structural con-
nectivity maps must still be addressed (Jespersen et al., 2007; Van Essen
et al., 2014), structural connectivity and other advanced modeling tech-
niques would likely also greatly benefit from larger numbers of DWIs per
individual.

4.9. Summary: accuracy and reliability of diffusion imaging models

We evaluated the accuracy and reliability of single and multiple
crossing-fiber models (LLS, STB, BPX, CSA-QBI, CSD, BaMM) in both
simulated and repeatedly sampled human DWI data (9 - 14 complete
DWI datasets), as a function of data amount. LLS, STB and BPX were
only capable of reifying their prior assumptions independent of data
amount. CSA-QBI required very large numbers of DWIs (>800) to start
approaching a degree of reliability and accuracy. CSD and BaMM per-
formed much better, with BaMM proving the relatively most over fitting
resistant across test cases. To enhance the scientific and clinical utility
of diffusion imaging, more data should be collected per individual and
analyses should be conducted with methods designed to reduce overfit-
ting.
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