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ScienceDirect
Understanding how behavior affects human brain organization

was the original motivation behind Precision Functional

Mapping (PFM), a deep phenotyping approach to human

neuroimaging. Here we review the original PFM studies, as well

as research investigating the impact of sensory and/or motor

deprivation, or disuse, on brain function. Next, we discuss

precision functional mapping of brain plasticity, focusing on

experiments that tracked casting of the dominant upper

extremity with daily resting-state functional MRI scans.

Mechanisms that shape brain circuits during early development

may persist into adulthood, helping to maintain the organization

of disused circuits.
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Introduction
Plasticity is the process that shapes brain circuits during

development and continually refines them throughout

life. A crucial part of typical developmental plasticity is

the active use of brain circuits [1,2]. Regular use may also

be required to maintain circuits throughout life. Disuse

greatly reduces the feedback by which motor circuits

maintain an accurate representation of the body or the

outside world. Thus, behavioral disuse can cause system-

atic reorganization of affected circuits and lead to deteri-

oration of function [3�,4].
www.sciencedirect.com 
What mechanisms does the brain have to protect circuits

during periods of relative disuse? Internally generated

spontaneous activity might play a role in circuit stability

and plasticity. Spontaneous activity helps to shape cir-

cuits early in development, before they have had any

contact with the outside world [1,2,5,6]. Similar mecha-

nisms may still be available to the adult brain to maintain

and reorganize large-scale brain circuits during disuse.

Here, we review neuroscientific research into disuse-

driven plasticity, including early work in animal models

and later advances from human studies. We also describe

our recent upper extremity casting study, which drove

functional network plasticity in three highly sampled

humans, suggesting novel mechanisms by which sponta-

neous activity shapes and maintains human brain circuits

[7��,8��].

Disuse-driven neural plasticity
A great deal of progress in neuroscience has come from

experiments that blocked the normal interactions

between brain circuits and the outside world. Suturing

one eye shut showed that ocular dominance columns in

the primary visual cortex are shaped by use-driven plas-

ticity, as afferents from the two eyes compete with one

another for representational territory [9,10]. Severing the

median nerve of an upper limb [11�], amputating a digit

[12], and casting one upper extremity [3�] revealed similar

use-driven plasticity mechanisms in the primary somato-

sensory and motor cortex.

Map plasticity proceeds through two phases [13].

Immediately after deafferentation, some neurons in

the deafferented cortical area begin to respond to

previously silent afferent inputs, a phenomenon termed

‘unmasking’. Then, over the course of several weeks,

new sensory representations fill the deafferented cortex

and are gradually refined into a smooth somatotopic

map. Later work revealed that unmasking is mediated,

at least in part, by focal disinhibition of disused cortex,

evident as local reductions in gamma amino butyric acid

(GABA) [14] and GABA receptors [15]. The gradual

remapping process that occurs after unmasking appears

to be driven by activity-dependent plasticity, because

this gradual remapping, but not the initial unmasking,

is blocked by chronic administration of an NMDA-

receptor antagonist [16].

Altered physiology of inhibitory interneurons is not only

important for acute unmasking during disuse but may be

crucial for permitting plasticity more broadly. Plasticity of

a given brain region is greatest during critical periods [17].

The maturation of parvalbumin-positive interneurons is a
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mailto:newbold@wustl.edu
mailto:dosenbachn@wustl.edu
https://doi.org/10.1016/j.cobeha.2021.04.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cobeha.2021.04.018&domain=pdf
http://www.sciencedirect.com/science/journal/23521546


162 Deep imaging – personalized neuroscience
key factor permitting critical period plasticity [18]. Mice

lacking one isoform of glutamic acid decarboxylase

(GAD65), an enzyme responsible for the synthesis of

GABA, never enter a critical period [19]. This deficit

can be reversed by diazepam, a GABA agonist [20].

Additionally, transplantation of immature inhibitory

interneurons permits critical period-like plasticity in

the adult cortex [21,22]. Disinhibition following disuse

may therefore represent a form of developmental regres-

sion that ‘reopens’ a critical period-like physiological state

and enhances adult plasticity [23,24].

Plasticity and spontaneous neural activity
Retinotopic organization of V1 is present even before

visual experience [5]. Development of retinotopic maps

before visual experience depends on a combination of

genetically encoded axon guidance cues and spontaneous

neural activity [6]. Once a rough retinotopic map is

established in V1 by molecular guidance cues, retinotopy

is further refined by waves of spontaneous activity that

originate in the retina. Retinal waves trigger similar waves

of activity in higher visual structures, including the super-

ior colliculus and primary and secondary visual cortex

[25��]. Co-activation of neighboring retinal ganglion cells

during spontaneous retinal waves refines retinotopic maps

in downstream structures [26–29].

A similar form of spontaneous activity helps shape soma-

tomotor maps [1,2]. Embryological movements are trig-

gered by waves of spontaneous activity that propagate

between motor neurons in the spinal cord [30,31]. Pat-

terned somatosensory feedback resulting from spontane-

ous movements is thought to promote self-organization of

pattern-generating circuits in the spinal cord [32].

Early in development, prenatal brain activity shows a

discontinuous pattern, in which brief waves of spontane-

ous activity are separated by long periods of silence [33].

The brief waves depolarize nearly all of the neurons in a

given brain region and the long period of silence result

from neuronal refractory periods [31]. Later in develop-

ment, at the onset of critical periods, newly matured

GABAergic interneurons begin to dampen spontaneous

waves of activity [34]. As spontaneous waves of activity

become smaller and the interleaved refractory periods

become shorter [33], the dynamics of spontaneous brain

activity shift from a pattern of brief, transient waves to an

ongoing, Gaussian process of many superimposed fluc-

tuations. Spontaneous activity in the adult brain typically

lacks the transient dynamics seen early in development

[35].

Human plasticity studies
Brain regions do not function in isolation but instead

cooperate with other regions to perform specific cognitive

operations. The concept of brain networks—sets of coop-

erating brain regions—has existed for several decades
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[36]. Non-invasive, whole-brain imaging has made it

possible to study brain networks directly in the human

brain.

The vast majority of the brain’s energy is expended on

spontaneous activity [37]. The largest fluctuations in

spontaneous activity occur at an infra-slow time scale

(<0.1 Hz), which means that they can be monitored using

fMRI [38]. Correlations in these fluctuations across brain

regions are known as ‘functional connectivity.’ Func-

tional connectivity (FC) has been used to divide the

brain into a number of canonical functional networks.

Some key brain networks include the visual, auditory and

somatomotor networks [39,40]; the ventral and dorsal

attention networks [41,42]; the default mode network

with roles in internally directed cognition and episodic

memory [43,44]; the salience network thought to assess

the homeostatic relevance of external stimuli [45]; the

frontoparietal control network supporting error-proces-

sing and moment-to-moment adjustments in behavior

[46–48]; and the cingulo-opercular control network

(CON), which maintains executive control during goal-

directed behavior [46,47,49].

Several prior studies have induced changes in human

behavior or experience hoping to measure plasticity

with resting state fMRI (rs-fMRI). Lewis et al. used a

visual discrimination task to train participants to focus

their attention on one visual quadrant [50�]. They

reported many different changes in FC throughout

the brain, but the most compelling of these effects

was a decrease in FC between the dorsal attention

network and the trained quadrant of V1. They also

found increased FC between the untrained regions of

V1 and the default mode network. At least two separate

studies have scanned participants before and after train-

ing on a visuomotor adaptation task. Albert et al.
reported increased FC in a fronto-parietal network

and in multiple regions of the cerebellum following

motor adaptation training [51]. Shannon et al. found

reduced FC between a ventrolateral premotor region

(Brodmann Area 44) and the primary visual cortex [52].

These and similar studies [53–55] all reported small

changes in FC (Dr � 0.1) following training. Conversely,

repeated sampling studies have shown FC to be very

stable across time, in the absence of specific interven-

tions [56�,57].

FC can be altered more drastically by brain lesions. For

example, brain plasticity can allow for typical cognitive

abilies, despite losing �25% of cortical tissue to bilateral

perinatal strokes [58]. Patients that have suffered strokes

of the corticospinal tract (CST) can show markedly

reduced FC (Dr � 0.5) between the left and right motor

cortex [59]. For patients with mild CST damage, higher

FC (more similar to control participants) predicted

greater strength and fine motor function [59]. A related
www.sciencedirect.com
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Precision functional mapping.

(a) Group-averaged images based on a combination of all 10?

participants from the Midnight Scan Club (MSC) experiment [64�]. Left:

Average T1-weighted structural image demonstrates the loss of focal

information due to group averaging. Right: An average functional

network map captures the general functional organization of the brain

but lacks the detailed features present in individual-specific maps.

Each color represents a different functional network. (b) Individual-

specific images of the three participants in the Cast-Induced Plasticity

Experiment [7��]. Left: T1-weighted structural images from each

participant demonstrate individual-specific features of structural

anatomy. Right: Individual-specific functional network maps reveal

unique features of functional anatomy not apparent in the group-

averaged map.
finding is reduced FC in patients missing one hand, either

due to congenital malformation [60] or amputation [61].

Measurement noise, differences in behavioral state, and

inter-individual variability induce variance in FC [57].

Classical group averaging to deal with noise is problem-

atic because individuals differ in their functional neuro-

anatomy [62]. A more recent approach to dealing with

measurement variability is to collect extensive rs-fMRI

data (a minimum of 30 min) in each participant and carry

out analyses separately in each individual, an approach

we have termed Precision Functional Mapping (PFM,

Figure 1). Russell Poldrack’s MyConnectome Project

[63�], in which he scanned himself twice per week for

an entire year, served as an inspiration for our Midnight

Scan Club (MSC) study. For the MSC, we collected

10 highly sampled individual-specific rs-fMRI datasets

[64�]. The MSC data have been used to generate indi-

vidual-specific maps of cortex [64], cerebellum [65],

thalamus [66], amygdala [67], hippocampus [68] and

striatum [69]. Individual differences in functional con-

nectivity architecture also exist in the mouse brain [70]. In

addition to identifying individual differences, PFM

enables finer-scale network parcellations [71,72] and

tracking of FC changes across time [7��,63,73,74].

Precise tracking of brain plasticity during limb
constraint
We recently demonstratedthatPFMcan be usedto trackthe

time course of disuse-driven plasticity in the human brain

[7��]. Three adult participants (Nico, Ashley and Omar)

were scanned at the same time of day for 42–64 consecutive

days (30 min of rs-fMRI/day) before, during and after two

weeks of dominant upper extremity casting (Figure 2).

Casting had profound effects on behavior and motor

function. Constant behavioral monitoring using acceler-

ometers on both wrists showed large reductions in use of

the casted extremity (�50%) and slight increases in use of

the un-casted extremity (+20%). Motor assessments com-

pleted immediately after cast removal showed large

reductions in grip strength (�40 lb) and fine motor skill

(�20% performance on Purdue Pegboard) of the casted

extremity. We did not observe consistent changes in

strength or fine motor skill of the un-casted extremity.

Daily rs-fMRI scans before, during and after casting in

three volunteers (Nico, Ashley, Omar) revealed multiple

changes in spontaneous activity of disused brain circuits.

The most striking observation was of large, spontaneous

pulses of activity that occurred in the disused motor

circuits during casting (Figure 3). No pulses were

observed before casting, many pulses were detected

during the cast period, and a small number of pulses

occurred after cast removal. Pulses had a waveform

resembling a canonical hemodynamic response function,
www.sciencedirect.com 
consistent with a brief burst of neural activity. In addition

to the disused motor cortex, pulses also occurred in the

dorsal anterior cingulate cortex/supplementary motor area

(dACC/SMA), anterior insula, secondary somatosensory
Current Opinion in Behavioral Sciences 2021, 40:161–168
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Figure?2
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Experimental design.

Data acquisition included resting-state functional MRI (rs-fMRI), task-based functional MRI (fMRI), strength testing, fine motor testing, and

constant behavioral monitoring using wearable accelerometers. Full experimental designs are shown for all three participants – Nico (a), Ashley

(b), and Omar (c).
cortex (SII), pre- and post-central sulci, angular gyri,

putamen, thalamus and cerebellum. Collectively, these

regions comprise the somatomotor circuit that normally

controls the casted extremity, as well as the cingulo-

opercular network (CON).

All participants showed highly consistent, rapid, and

anatomically specific changes in FC (Figure 4). The

most prominent change was a loss of typical FC between

the disused motor cortex (L-SM1ue) and the homotopic

region of the opposite hemisphere (R-SM1ue). All partici-

pants showed large effect sizes (Nico: Dr = �0.23, Ashley:
Current Opinion in Behavioral Sciences 2021, 40:161–168 
Dr = �0.86, Omar: Dr = �0.61). Loss of FC between L-

SM1ue and R-SM1ue occurred rapidly during casting, with

significant decreases detectable in all participants within 48

hours of casting. Recovery was rapid in two participants,

while one participant (Omar) continued to show dimin-

ished FC for two weeks after cast removal. L-SM1ue
disconnected not only from R-SM1ue, but also from the

remainder of the somatomotor network [7��].

L-SM1ue also showed increased FC with the dACC/SMA,

anterior insula, SII, bilateral pre- and post-central sulci

and angular gyri, as well as regions of the putamen,
www.sciencedirect.com



Functional network plasticity Newbold and Dosenbach 165

Figure?3
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Spontaneous activity pulses in disused circuits.

(a) Resting-state functional MRI (rs-fMRI) signals recorded from left

and right primary somatomotor cortex (L-SM1ue and R-SM1ue) during

the casting period. Several large pulses of spontaneous activity occur

in the disused L-SM1ue. (b) Recordings of 144?pulses detected in one

participant (Ashley), superimposed on one another. Pulses had a

consistent shape resembling a canonical hemodynamic response

function, consistent with a brief burst of neural activity. (c) Whole-brain

analysis of variance (ANOVA) showing synchronized pulses in the left

somatomotor cortex, left insula, and right cerebellum. Pulses also

occurred in the left dorsal anterior cingulate cortex (dACC, not shown).

Figure?4
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Functional disconnection of disused circuits.

(a) Seed maps showing functional connectivity between the left

primary motor cortex (blue dot) and the rest of the brain before (Pre),

during (Cast) and after casting (Post). Results are shown for one

example participant (Ashley). Before casting, the left motor cortex

showed strong homotopic functional connectivity (FC) with the

contralateral motor cortex, as well as ipsilateral FC with the

supplementary motor cortex. Homotopic FC was lost during casting

and then regained after cast removal. (b) Daily time course of

homotopic motor FC. FC was highly stable before casting and

decreased rapidly during casting. FC continued to weaken throughout

the cast period and then returned to baseline within 2?days after cast

removal.
thalamus and cerebellum. FC increases were highly spe-

cific to the CON and did not involve any other functional

networks. Increased FC between L-SM1ue and the CON

appeared to result from the spontaneous activity pulses

that occurred synchronously in both structures. Censoring

pulses partially reversed cast-driven FC increases. Addi-

tion of simulated pulses recreated cast-driven FC

increases. Applying these same censoring and additional
www.sciencedirect.com 
analyses to cast-driven decreases in FC between

homotopic somatomotor regions suggested that the plas-

ticity pulses could not explain FC decreases during

casting [8��].

Conclusions
Brain circuits require regular use to maintain their

functional architecture

One hypothesis regarding the spatiotemporal organiza-

tion of spontaneous activity is that resting-state FC results

from prior coactivation of brain regions during behavior

and experience [47,50�,52,75,76]. This is often called a

‘Hebbian-like’ account of FC, which suggests that brain

regions that co-activate during behavior show stronger FC

during subsequent rest. The massive reductions in FC

(Dr � 0.8) due to casting-driven disuse represent some of
Current Opinion in Behavioral Sciences 2021, 40:161–168
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the strongest evidence found to date that co-use can

affect FC. The casting experiment also provided addi-

tional insights into the timescales of disuse-driven FC

changes. Blocking co-use of the left and right upper

extremities causes near-complete loss of FC between

the left and right motor cortex in a matter of one to

two days.

Precision functional mapping enables reliable tracking

of plasticity

The anatomically specific, large-magnitude changes in

FC observed during casting can partly be attributed to the

dramatic behavioral manipulation we imposed (two

weeks of persistent limb constraint) and the large amount

of data we collected on each participant (21–32 hours of

rs-fMRI per participant). The reliability of FC measure-

ment increases drastically with increasing duration of

recordings [56�]. Typical studies acquire very little data

(often <10 min) on each participant. Such short scans

yield very noisy measurements of FC and would provide

little statistical power to detect FC changes due to an

experimental manipulation. The novel experimental

design we used to examine FC changes during casting

could easily be applied to study other plasticity manip-

ulations, fluctuations in hormone levels [73], progression

of psychiatric and neurological diseases, or responses to

therapies. In a time when the more common approach of

cross-sectionally correlating individual-differences with

naturally occurring variance in behavioral trait measures is

facing a replication crisis [77], PFM can provide an

alternate path forward for relating rs-fMRI measures to

behavioral and clinical variables.

Spontaneous activity pulses may help maintain disused

circuits

The brain may have mechanisms that at least temporarily

protect circuits during disuse. Adult brain circuits are

typically maintained by regular use [1]. Spontaneous

neural activity may help protect circuits from disuse-

driven functional degradation.

Spontaneous waves of activity typically cease early in criti-

calperiods[31,33],when thebrainbegins to relyonexternal

inputs to shape circuits. At critical-period onset, inhibition

by parvalbumin-positive interneurons increases [18,34].

Increased inhibitory tone remains into adulthood and spon-

taneousactivity in the adult brain typically does not include

the transient waves of activity seen in pre-critical period

development. However, following the onset of disuse,

parvalbumin-expressing interneurons in disused circuits

become less active, shifting the excitatory-inhibitory bal-

ance in these circuits towards a more development-like

state [78]. Focal disinhibition during disuse may permit the

reemergence of spontaneous waves of activity, even in the

adult brain. If so, these waves of activity may help maintain

the somatotopic organization that is shared across regions

throughoutthesomatomotor system.Closerexaminationof
Current Opinion in Behavioral Sciences 2021, 40:161–168 
spontaneous activity pulses may reveal new targets by

which to promote maintenance and recovery of function

in the setting of clinical disuse or brain injury.
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