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Abstract

Analyses of structural MRI (sMRI) data depend on robust upstream data quality control (QC). It is also

crucial that researchers retain the maximum amount of usable data to ensure reproducible,

generalisable models. The time-consuming task of manual QC evaluation has prompted the

development of tools for the automatic assessment of brain sMRI scans. Such tools are particularly

valuable in this age of big data. One limitation of the most commonly used tools is that execution

time is long, which poses a challenge in terms of duration and resource usage, particularly when

processing large datasets. Further, evaluation is global (pass/fail) rather than localized. Having a tool

that localizes areas of low quality could prevent unnecessary data loss. To address these issues, we

trained a Deep Learning model, ProtoPNet, to classify minimally preprocessed 2D slices of scans that

were manually annotated with a refined quality assessment (ABIDE 1 n = 980 scans). To validate the

best model, we assessed 2141 ABCD scans for which gold-standard manual QC annotations were

available. We obtained excellent accuracy: 82.4% for good quality scans (Pass), 91.4% for medium to

low quality scans (Fail). Further validation using 799 scans from ABIDE 2 and 751 scans from

ADHD-200 confirmed the reliability of our model. Accuracy was comparable to or exceeded that of

another commonly used tool (MRIQC), but with dramatically reduced processing and prediction time

(1 min per scan, GPU machine, CUDA-compatible). To facilitate faster and more accurate QC

prediction for the neuroimaging community, we have shared the model that returned the most

reliable global quality scores, local predictions of quality, and maps and prototypes of local artifacts

as a BIDS-app (https://github.com/garciaml/BrainQCNet).

Abbreviations:

● CNN: Convolutional Neural Networks, a category of Deep Learning algorithm

● ML: Machine Learning

● DL: Deep Learning

● ProtoPNet: Prototypical Part Network model

● VGG19:  Visual Geometry Group model, a type of very deep convolutional neural network

with 19 layers in the model;

● ResNet152: Residual Networks model with 152 layers

● DenseNet161: Densely Connected Convolutional Networks with 161 layers

● proto-VGG19: ProtoPNet model with a VGG19 architecture in the CNN part

● proto-ResNet152: ProtoPNet model with a ResNet152 architecture in the CNN part

● proto-DenseNet161: ProtoPNet model with a DenseNet161 architecture in the CNN part
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1. Introduction

Analyses of structural MRI (sMRI) data depend on robust upstream data quality control. This is

particularly true for predictive analyses incorporating machine learning techniques, where artifacts

and noise may severely bias results and jeopardize generalisability (Backhausen et al., 2016; Gilmore

et al., 2019;  White et al., 2018; Reuter et al., 2015). Artifacts related to participant motion are a

particular concern when working with very young participants, or those with neurodevelopmental

diagnoses, such as Autism Spectrum Disorder and Attention-Deficit/Hyperactivity Disorder (Rauch,

2005; Nordahl et al., 2016). In such settings, data collection is usually a demanding and costly task,

and it is crucial that researchers retain the maximum amount of usable data to build realistic models.

In this age of big data, manual QC evaluation of sMRI data through visual inspection is a

time-consuming and monotonous task, prompting the development of new tools for automatic (full

or partial) quality assessment of brain sMRI scans (Esteban et al., 2017; Sujit et al., 2019; Zarrar et al.,

2015;  Keshavan et al., 2019; White et al., 2018; Alfaro-Almagro et al., 2018; Glasser et al., 2016;

Marcus et al., 2013). Generally, these tools compute a number of diagnostic metrics using sMRI data

to help researchers sort images prior to any analysis. One such tool, MRIQC (Esteban et al., 2017),

has revolutionized QC of MRI data by providing a reliable and accurate Machine Learning-based

assessment of scan quality that has been made freely available to the neuroimaging community as

an open-source application (https://mriqc.readthedocs.io/en/stable/). The tool extracts 64 image

quality metrics that were chosen on the basis of the Preprocessed Connectomes Project (PCP)

Quality Assessment Protocol (Zarrar et al., 2015) and include measures such as Contrast to Noise

Ratio and Entropy Focus Criterion (Esteban et al., 2017). The MRIQC algorithm uses Machine

Learning to find a function that predicts a global quality score for each scan using these metrics.

Although highly accessible, automated, and accurate, growth in the size of datasets (e.g., thousands

to tens of thousands of sMRI scans for database such as ABCD (Volkow et al., 2018; Karcher and

Barch, 2021), ENIGMA (Whelan et al., 2018) and UK Biobank (Sudlow et al., 2015)) and increasing

concern about energy usage prompted us to investigate whether there was scope to build on the

progress of MRIQC to further advance automated QC.

We identified two primary opportunities for development. First - the time and resources required to

assess each sMRI scan. Because the MRIQC prediction is based on a large number of image quality

metrics (64) computed for each scan, it is relatively demanding in terms of time (~45 minutes per

scan), and by consequence, energy resources. Although some of this image processing may be

exploited in subsequent analyses, extracting these metrics for all scans means that processing

resources are expended on scans that are ultimately unusable due to poor quality. When working

with very large databases (>1000 scans), MRIQC may take a long time to complete, unless

computations can be parallelized on High Performance Clusters. Second, the quality score returned

by MRIQC is a global one. For some scans, areas of low quality, artifact, or corruption may be

circumscribed; uncorrupted areas might still be of interest for certain studies (e.g., focused on

subcortical regions or cerebellum rather than cortex). A quality assessment that included both global

and local quality assessments would minimize data loss.
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Deep Learning algorithms have the potential to address these two issues. While training a Deep

Learning model may initially take longer than a traditional Machine Learning (ML) algorithm (because

there are more parameters to train), the subsequent processing and inference time is reduced

compared to ML, thanks to the chain of simple computations performed, particularly in the context

of image processing and on GPU machines. This rapid inference makes DL models more scalable for

Big Data applications. In addition, it has been shown that Convolutional Neural Networks (CNN) - a

category of Deep Learning algorithms - can process images more efficiently than traditional image

processing methods, by considerably reducing processing time while generally increasing accuracy

(Hastie et al., 2009; LeCun et al., 1999).

Yet, the medical imaging community has been wary of CNN, possibly due to their more complex and

abstract nature, which leads to difficulties with interpretability. Recent improvements in the

interpretability and clinical utility of such models may address these concerns. One such

development is the use of visual attention models. These models mimic human visual attention by

focusing on the relevant parts of an image in the task of image recognition. For example, when

recognising a bird in an image, a person might look at different levels of detail in the image, such as

the size, the color, shape of the beak, etc. Attention-based algorithms mimic this process through

different mathematical and implementation designs. These models expose the parts of an input the

network algorithm focuses on (identifies as most strongly predictive). For instance, class activation

mapping (Zhou et al., 2016) provides an interpretation at the object level (in our example, a map

with an activated area covering the bird) while other models provides an interpretation at different

parts of the image (in our example, several maps with activated areas covering the beak only, a

specific color on the bird, etc.) (Chen et al., 2019; Zhang et al., 2014; Zheng et al., 2017). ProtoPNet is

a CNN algorithm that provides this kind of refined part-level interpretation in addition to another

level of interpretability: it points to prototypical cases that are similar to the parts identified as

predicted (i.e., focused on).

MRI studies have started to integrate the attentional approach within known Deep Learning models,

such as the segmentation algorithm U-Net combined with an attention mechanism (Khanh et al.,

2020) and brain tumor detection (Ranjbarzadeh et al., 2021). Here, we leveraged the advantages of

Deep Learning models with attention mechanisms to perform automated QC of sMRI data. We

trained an attention model to perform QC assessments of minimally processed developmental sMRI

data, including data collected from participants with neurodevelopmental diagnoses. Specifically, we

trained the CNN ProtoPNet, as described above (Chen et al., 2019). The process used by the

algorithm is similar to the one humans use when we perform manual classification of MRI scans.

That is, we visually search for the presence of artifacts, slice by slice, in 2D. To recognise and

distinguish the types of artifacts on a scan, we compare the slice to slices from other scans that have

similar flaws. ProtoPNet imitates this human attention process artificially. A key advantage of this

model is that it can return local quality scores for every pixel of a 2D slice of a 3D scan, along with a

global quality score.

Among the different layers of ProtoPNet, the model has a Convolutional layer corresponding to a

CNN, which can be pre-trained on appropriate data (here, MRI images). We compared three different

pre-trained CNN models: VGG19 (Simonyan and Zisserman, 2015), ResNet152 (He et al., 2015) and

DenseNet161 (Huang et al., 2018). To train our algorithms, we used 980 structural brain MRI scans

from the ABIDE 1 dataset (Di Martino et al., 2014). We validated the best model using the gold
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standard test: independent, multisite data. Specifically, we validated the best model using 2141 scans

from ABCD (Volkow et al., 2018; Karcher and Barch, 2021), 799 scans from ABIDE 2 (Di Martino et al.,

2017) and 751 scans from ADHD-200 (Bellec et al., 2017). A key advantage of our algorithm over

existing approaches is that it requires only minimal preprocessing, which dramatically reduces the

total processing time for every scan (1 minute on a GPU machine, 20 minutes on a CPU machine). In

the context of the growing use of enormous datasets containing tens of thousands or even tens of

thousands of participants, our method could offer substantial savings in terms of time and

computational resources. Across our independent validation datasets, we show excellent accuracy

that matches or surpasses existing automated QC algorithms.

2. Materials and Methods

2.1 Datasets and pipeline summary

In our study, we used structural MRI data from ABIDE 1 (Di Martino et al., 2014), ABIDE 2 (Di Martino

et al., 2017), ADHD-200 (Bellec et al., 2017) and ABCD (Volkow et al., 2018; Karcher and Barch, 2021).

Details of each of the datasets used are provided in Table 1.

N Scans QC metrics Age Gender N Sites

ABIDE 1 980 PCP [11] metrics
computed;Ternary manual
annotation by 3 judges
judgment : “OK”, “maybe”,
“fail”.

min = 6.5
q_25% = 11.6
median = 14.7
q_75% = 20
max = 64

F: 147
M: 833

20

ABIDE 2 799 None available min = 5.1
q_25% = 9
median = 11
q_75% = 14.7
max = 64

F: 202
M: 597

14

ADHD-200 751 Binary manual
annotation: 0 for pass; 1
for fail.

min = 7
q_25% = 9.2
median = 11
q_75% = 13.6
max = 21.8

F: 326
M: 424
1 unknown

7

ABCD 2141 Ternary manual
annotation: pass,
questionable, fail

min = 0
q_25% = 6
median = 12
q_75% = 23
max = 81

F: 1153
M: 988

unknown

Table 1. Dataset descriptions.
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A schematic of our study pipeline is shown in Section 9.2 (Supplemental Information). A summary of

the process is as follows:

1. We performed detailed manual QC (Backhausen et al., 2016) of 980 scans from ABIDE 1

database (Di Martino et al., 2014). Although pass/fail/maybe annotations are provided with

the dataset (see Table 1), our manual annotation captured additional detail about the

different types of artifact present on a given scan.

2. We built a training set and a validation set that served to train a Deep Learning algorithm in

the task of the detection of structural MRI artifacts. The Deep Learning algorithm we used is

called ProtoPNet.

3. We used three different model architectures (VGG19, ReNet152f, DenseNet161) and trained

the ProtoPNet algorithm using different numbers of epochs. An epoch is a single step within

which the algorithm has been optimized by all the images of the training set. Because of GPU

memory issues, optimization is achieved through an iterative process: we optimize the

algorithm with batches of data of size n, which is smaller than the full size of the training set,

N.

4. We selected the best model on the basis of ROC AUC and accuracy scores on the training and

validation sets, and on the first testing set (908 scans from ABIDE 1 (Di Martino et al., 2014))

5. We validated the best model on three independent testing sets (799 scans from ABIDE 2 (Di

Martino et al., 2017), 751 scans from (Bellec et al., 2017), 2141 scans from ABCD (Volkow et

al., 2018; Karcher and Barch, 2021)).

Importantly, prior to the steps involved in converting the 3D scans to 2D slices, and data

augmentation, no preprocessing was applied to the sMRI scans.

2.2 Manual Quality Control Annotation

Inspired by the work of (Backhausen et al., 2016), we manually annotated MRI scans from ABIDE 1

according to a classification scheme specifying four different types of artifacts: (1) blurring (global or

local), (2) ringing, (3) low contrast noise ratio (CNR) of subcortical structures, (4) low contrast noise

ratio between grey matter and white matter. For each slice of each 3D scan, we also noted whether

each observed artifact was visible locally or globally on the 2D slice, and on what axis (sagittal,

coronal, axial). When no artifact was observed, we labeled the 3D scan as “good quality” (Class 0).

Otherwise, we labeled the 3D scan as being corrupted (Class 1; see Figure 1), keeping in mind that

Class 1 is a wide spectrum that includes scans with localized artifacts as well as very low quality,

globally disrupted scans.
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Figure 1. Example of a good quality scan (top panel - Class 0) and a very low quality scan (lower panel - Class 1)

2.3 Training & Validation sets

We built an initial set of images on which to train our Deep Learning algorithm from 30 highly

corrupted/distorted scans (Class 1) and 30 high quality scans randomly selected from Class 0. We

validated every 2 epochs by assessing the prediction accuracy of the model for 6 additional very low

quality scans (i.e., scans with clearly identifiable global artifact/corruption) and 6 high quality scans.

Highly corrupted scans were included in both the training and validation sets in order to maximize

the chances of obtaining meaningful prototypes representative of scan artifacts and corruption.

Chen et al. (2019) showed that the ProtoPNet network algorithm worked better on cropped images,

so each 3D scan was cropped to remove black areas, then converted from Nifti format to 2D PNG

images (using Med2Image https://github.com/FNNDSC/med2image). For each scan there were

between 150-200 2D slices in every 3 directions - sagittal, coronal, axial - approximately 450-600

images per scan. The first and last 20 slices of each resulting image stack were discarded since they

contained little brain tissue or artifacts. Taking a random sample of 50 slices per axis per scan, we

then created a training set comprising 4500 very low quality and 4500 good quality slices from all the

60 participants of the training set, and a validation set of 1800 slices, also balanced for quality.
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Next, this training set was augmented with a set of random transformations (using the library

Augmentor https://github.com/mdbloice/Augmentor) which rotated, skewed, and sheared the

images. This yielded an augmented training set of 270000 images. Data augmentation is used to

prevent overfitting in Deep Learning, thus improving generalizability of the algorithms.

All 2D images from good quality scans were defined as Label 0, and all 2D images from low quality

scans were defined as Label 1. The algorithm was trained to perform a binary classification between

Label 0 and Label 1 images using the augmented training set, and validation accuracy was computed

every 2 epochs.

2.4 Deep Learning Algorithm

The algorithm we used - ProtoPNet (Chen et al., 2019) - is a Deep Learning Attention model that

reproduces the human manual process for classifying images.

The network consists of a regular convolutional neural network, followed by a prototype layer and a

fully connected layer with weight matrix and no bias. In our experiment we used three different

architectures for the regular convolutional network:VGG19 (Simonyan and Zisserman, 2015),

ResNet152 (He et al., 2015) and DenseNet161 (Huang et al., 2018). These three models are well

known Deep Learning algorithms for image classification. They have shown great performance in 2D

[6-8]. We compared these three models integrated in the ProtoPNet model because they are all

performant algorithms with different architectures, leading to variable benefit on the number of

parameters, the capacity to fit the data, etc. More globally in Machine Learning, it is appropriate to

compare different types of algorithm for a same problem, to detect overfitting and to retain the best

type of algorithm for the given problem [25].

In their approach, Chen et al. (2019) constrained each convolutional filter to be identical to some

latent training patch, in order to make every convolutional filter interpretable as visualisable

prototypical image parts. In our study, the “prototypes” or “prototypical images” corresponded to

the Class 0 (good quality) and Class 1 (poor quality) images of the augmented training set. The

algorithm works, in part, by comparing images in the validation and test sets to parts of the

prototypes. The number of images selected randomly as prototypes during each epoch of training

was set to 2000.

In the ProtoPNet global architecture, the prototype layer computes similarity scores between the

convolutional filters of the input image and the ones from the 2000 prototypes at a fixed epoch.The

similarity scores are computed with an inverted L2 norm distance.

Chen et al. [5] explained that given a convolutional output , the j-th prototype unit in𝑧 =  𝑓(𝑥) 𝑔
𝑝

𝑗

the prototype layer computes the squared distances between the j-th prototype and all𝑔
𝑝

𝐿2 𝑝
𝑗

patches of that have the same shape as , and inverts the distances into similarity scores. The𝑧 𝑝
𝑗

result is an activation map of similarity scores whose value indicates how strong a prototypical part is

present in the image [5].
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Mathematically, the prototype unit computes𝑔
𝑝

𝑗

. The function is𝑔
𝑝

𝑗

(𝑧) = 𝑚𝑎𝑥
𝑧
~

 ∈𝑝𝑎𝑡𝑐ℎ𝑒𝑠(𝑧)
𝑙𝑜𝑔((||𝑧

~
 − 𝑝

𝑗
||

2
² + 1)/(||𝑧

~
 − 𝑝

𝑗
||

2
² + ϵ)) 𝑔

𝑝
𝑗

monotonically decreasing with respect to (if is the closest latent patch to ) [5]. If the||𝑧
~

− 𝑝
𝑗
||

2
𝑧
~

𝑝
𝑗

output of the j-th prototype unit is large, then there is a patch in the convolutional output that is𝑔
𝑝

𝑗

(in 2-norm) very close to the j-th prototype in the latent space, and this in turn means that there is a

patch in the input image that has a similar concept to what the j-th prototype represents [5].

Next, the fully connected layer predicts the class of the input image from the 2000 similarity scores.

We obtained the probability scores by applying the softmax function to the output logits of the fully

connected layer. In theory, this method of regularization and comparison should improve the

generalizability of the algorithm. That is why, despite a small training set, we expected the algorithm

to deliver good results. More mathematical details of the ProtoPNet model are given in (Chen et al.,

2019), and Figure 2 illustrates its architecture in our context.

Figure 2. Architecture of the model; example for a very low quality scan.

We initiated the training with pre-trained models - VGG19, ResNet152, DenseNet161 - on ImageNet

(Deng et al., 2009), drawn from the model zoo of Pytorch

(https://pytorch.org/serve/model_zoo.html ). We used the same initialisation parameters as

previous experiments (Chen et al., 2019), including 5 “warming” epochs for which no accuracy was

computed. As a reminder, each epoch is a step during which the algorithm is optimized by all the

images of the training set. Because of the GPU memory demands of this process, optimization is

achieved iteratively: we optimize the algorithm using small batches of data. Here, we used the same

batch sizes as the original study by Chen et al. (2019) - 80 for the training and 100 for the testing

phase.
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We trained our models in a distributed way on AWS cloud instances of type p3.8xlarge and

p3.16xlarge initialized with the AMI Deep Learning. The instances correspond to 4 or 8 GPUs NVIDIA

V100. We trained ResNet152 on 20 epochs and VGG19 and DenseNet161 on 30 epochs. We saved

models and associated prototypes every 10 epochs.

Finally, we integrated the best model to an open-source BIDS-app (Gorgolewski et al., 2017) we

developed, to share it with the neuroimaging community in a ready-to-use format. BIDS (Brain

Imaging Data Structure; Gorgolewski et al., 2016) is a community effort aimed at providing a

standardized way of organizing neuroscience datasets that has facilitated the development of a

number of open source analysis pipelines and applications. Instructions to use our app are available

here: https://github.com/garciaml/BrainQCNet.

2.5 Independent Validation Sets

After training the models, we performed a validation on separate testing sets that consisted of all the

slices from 4599 full 3D brain sMRI scans:

- 908 scans from ABIDE 1 (Di Martino et al., 2014) that were used to select the best model;

- 2141 scans from ABCD (Volkow et al., 2018; Karcher and Barch, 2021) that were used to

validate the best model;

- 799 scans from ABIDE 2 (Di Martino et al., 2017) that were used to validate the best model

(see Section 9.3; Supplemental Information);

- 751 scans from ADHD-200 (Bellec et al., 2017) that were used to validate the best model (see

Section 9.3; Supplemental Information).

2.6 MRIQC

MRIQC (Esteban et al., 2017) is currently the reference algorithm for assessing automatically the

quality of brain structural and functional MRI scans. It is based on a Machine Learning algorithm that

was trained on a large number of metrics of quality previously extracted and computed from raw

scans. As outlined in the introduction, these metrics were chosen as part of the Preprocessed

Connectomes Project (PCP) Quality Assessment Protocol (Zarrar et al., 2015)  to harmonise the

assessment of the quality of brain MRI scans (Zarrar et al., 2015), like the signal-to-noise ratio. The

output of MRIQC is a score and a binary prediction pass/fail outcome for each scan.

The main disadvantage of MRIQC is that it takes about 45 minutes to compute a QC result, mainly

because of all the preprocessing steps involved in extracting the quality metrics.

Nevertheless, since this method is reliable (accuracy estimated to 76%±13% on new sites, using

leave-one-site-out cross-validation, accuracy of 76% on a held-out dataset of 265 scans; Esteban et

al., 2017), and widely employed, we used it here to generate predictions of the quality of each scan

on ABIDE 2 (Di Martino et al., 2017; 799 scans). We treated these MRIQC-based predictions as the

“ground truth” with which we compared the results of our algorithm.
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We also compared the distribution of the scores returned by MRIQC for ABIDE 1 (Di Martino et al.,

2014) (980 scans) with the distribution of scores returned by our models. In particular, we analized

the discrimination between good quality scans and medium quality and low quality ones.

2.7 Data Ethics statement

The three databases used in the project - ABIDE 1, ABIDE 2, ADHD200 - are shared by the

International Neuroimaging Data-sharing Initiative (http://fcon_1000.projects.nitrc.org/). Each

dataset was fully de-identified and anonymized in accordance with the US Health Insurance

Portability and Accountability Act (HIPAA). All the datasets were collected and shared in accordance

with the local regulations on ethics and data protection. Data usage is unrestricted for

non-commercial research purposes; it is openly shared with the scientific community under the

license Creative Commons BY-NC-SA. Our work with these open data is approved by the Research

Ethics Committee of the School of Psychology at Trinity College Dublin.

Data from the ABCD study was fully de-identified and anonymized, and each data-collecting site

obtained informed consent from participants and their parents/guardians. The ABCD study

developed guidelines for ethical considerations to be applied by each data-collecting site, and

organized a hierarchy of workgroups who assessed whether each step of the collection process

conformed to the ABCD guidelines (Clark et al., 2018).

2.8 Materials and code availability

The three databases used in the project - ABIDE 1, ABIDE 2, ADHD200 - are openly shared by the

International Neuroimaging Data-sharing Initiative (http://fcon_1000.projects.nitrc.org/). The ABCD

database is available upon request (https://nda.nih.gov/abcd/request-access).

All information about how sample size and data exclusion was determined, inclusion criteria

(established prior to data analysis), and all derived measures used in this study are described in the

Methods and Results sections. No part of the analysis was pre-registered prior to the research being

conducted.

To maximize the reproducibility of our analyses and usability of our model, all code for preprocessing

and predicting the quality of structural MRI data scans ordered is available as a BIDS-database in

https://github.com/garciaml/BrainQCNet_CPU for users of CPU machines and in

https://github.com/garciaml/BrainQCNet_GPU for users of GPU machines compatible with CUDA

technology. Documentation for our BIDS-app on CPU or CPU is available here:

https://github.com/garciaml/BrainQCNet.

All global predictions of quality for the 4671 scans we used from the ABIDE 1 & 2, ADHD200 and

ABCD databases are available through the GitHub repository:

https://github.com/garciaml/BrainQCNet.
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3. Results

3.1 Annotations

Manual QC inspection of 980 scans from ABIDE 1 (Di Martino et al., 2014) identified 564 high quality

scans, 36 very low quality scans (that we used in the training and validation sets), and 380 scans with

either local artifacts or with mild-moderate global corruption (used in the testing set).

Local ringing (likely reflecting motion) was the most commonly occurring local artifact, and was often

combined with other artifact types.

3.2 Training performance

In the results and figures below, we use the following naming convention: the prefix “proto-”

corresponds to the ProtoPNet algorithm, while the suffix indicates the CNN architecture: VGG19,

ResNet152, or DenseNet161 (see subsection 2.4 of section 2. Materials and Methods).

We obtained excellent accuracy for the detection of good (Class 0) and bad (Class 1) quality slices

during training. From epoch 10, the accuracies of the three models - proto-VGG19, proto-ResNet152,

proto-DenseNet161, were above 99% on the Training set and above 95% on the Validation set. This

means that more than 99% of the 270000 train images were well predicted from epoch 10. Likewise,

more than 95% of the 1800 validation slices were well predicted from epoch 10. Looking at the

performance on the validation set, the model proto-DenseNet161 performed better than

proto-VGG19 and proto-ResNet152 (see Figure 3).

Figure 3. Evolution of model accuracies on the Training and Validation sets
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3.3 Selection of the best model using ABIDE 1

We took the percentage of slices classified as corrupted (Class 1) as the probability that the whole

scan is corrupted. For a given scan, if this percentage is >50%, then the predicted class of the scan

was taken as Class 1. For a given scan, this threshold on the returned probability is used to produce a

class prediction, because that is useful in the context of QC (pass/fail). However, there are some

applications where an examination of the value of the probability itself might be warranted, since

this may give more information about the quality of a scan or particular set of scans.

ProtoPNet Models:
(CNN-base_epochs)

Train - 60 scans Validation - 12 scans Test - 908 scans

densenet161_10 Accuracy = 100%
ROC_AUC = 1

Accuracy = 100%
ROC_AUC = 1

Accuracy = 69.82%
ROC_AUC = 0.7751

densenet161_20 Accuracy = 100%
ROC_AUC = 1

Accuracy = 100%
ROC_AUC = 1

Accuracy = 64.65%
ROC_AUC = 0.7738

densenet161_30 Accuracy = 100%
ROC_AUC = 1

Accuracy = 100%
ROC_AUC = 1

Accuracy = 62%
ROC_AUC = 0.7578

resnet152_10 Accuracy = 100%
ROC_AUC = 1

Accuracy = 100%
ROC_AUC = 1

Accuracy = 75.44%
ROC_AUC = 0.8247

resnet152_20 Accuracy = 100%
ROC_AUC = 1

Accuracy = 100%
ROC_AUC = 1

Accuracy = 68.72%
ROC_AUC = 0.8107

vgg19_10 Accuracy = 100%
ROC_AUC = 1

Accuracy = 100%
ROC_AUC = 1

Accuracy = 67.18%
ROC_AUC = 0.8229

vgg19_20 Accuracy = 100%
ROC_AUC = 1

Accuracy = 100%
ROC_AUC = 1

Accuracy = 70.04%
ROC_AUC = 0.8494

vgg19_30 Accuracy = 100%
ROC_AUC = 1

Accuracy = 100%
ROC_AUC = 1

Accuracy = 71.81%
ROC_AUC = 0.8472

MRIQC_CLF Accuracy = 96.67%
ROC_AUC = 0.7667

Accuracy = 100%
ROC_AUC = 1

Accuracy = 70.37%
ROC_AUC = 0.7236

Table 2. Accuracy and ROC AUC scores for every ProtoPNet model on the Training, Validation, and Test sets.

Last row: comparison with MRIQC performance.

Table 2 compares the classification accuracies for global quality of the Training, Validation, and Test

sets, obtained for each of the models. The last row shows the accuracy for MRIQC scores launched

on the same datasets. These results showed that the best model for the prediction of sMRI scan

global quality is proto-ResNet152 trained on 10 epochs. This model has superior accuracy than

MRIQC for the Training and test sets.
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We should mention that to get the predictions from the MRIQC classifier, we did not set a particular

threshold on probability values, we used the default parameters. Importantly, the MRIQC algorithm

was trained using the ABIDE dataset, so its accuracy for the ABIDE dataset should be particularly

good.

Figure 4. Comparison of the distribution of probabilities for the test set (908 scans), colored by predicted class:

green for class 0 (good quality scans), blue for class 1 (medium/low quality scans).

In Figure 4, we can see that the distribution of predictions of "uncorrupted" (Class 0; green) scans

looks gaussian for our models. In contrast, the distribution of predictions for "corrupted" (Class 1;

blue) looks like a gaussian mixture. This distribution shape is expected since there are globally

corrupted scans and locally corrupted scans, then the percentage of slices predicted to be corrupted

will be different for the two types. In addition, there are different intensity levels for the artifacts as

described by Backhausen et al. (2016) that might yield different levels of probability.
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Figure 5. Boxplots show the predicted probabilities for truly good quality scans (green) and truly medium/low

quality scans (blue) for all models and for MRIQC, using 980 scans from ABIDE 1.

Figure 5 shows that the probabilities of corrupted scans and those of uncorrupted scans are

overlapping. The greater the overlap, the more False Positives and False Negatives there are. The

overlap is greater for the MRIQC algorithm than for any of our models.

Test - 908 scans Uncorrupted - Class 0
(528 scans)

corrupted - Class 1
(380 scans)

densenet161_10 Accuracy = 99.43% Accuracy = 28.68%

densenet161_20 Accuracy = 100% Accuracy = 15.53%

densenet161_30 Accuracy = 100% Accuracy = 9.21%

resnet152_10i Accuracy = 95.27% Accuracy = 47.89%

resnet152_20i Accuracy = 99.62% Accuracy = 25.79%

vgg19_10h Accuracy = 99.62% Accuracy = 22.11%

vgg19_20h Accuracy = 99.05% Accuracy = 29.74%

vgg19_30h Accuracy = 98.48% Accuracy = 34.74%

MRIQC_CLF Accuracy = 91.1% Accuracy = 41.58%
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Table 3. Accuracies for each class for every model and MRIQC on test sets

Table 3 compares the accuracy scores for prediction of each class separately. For Class 0 (good

quality scans), all of our models have accuracy scores greater than 95%, while MRIQC has a lower

score of 91.1%. For Class 1 (scans with artifacts), the scores are globally lower. The best score is

achieved by the model proto-ResNet152 trained on 10 epochs (47.89%) followed by the MRIQC

classifier (41.58%). These lower scores are explainable by the fact that, in the Test set, scans are less

corrupted than in the Training set, and have different levels of intensity of artifacts. This might yield

to probabilities between 0.4 and 0.5 for medium quality scans, meaning the class predicted is 0. This

corresponds to the overlaps of probabilities shown in Figure 3. Moreover, for certain models, we

might miss information because of the limited variety of prototypes randomly picked from the train

set.

In addition, looking at the 2000 prototypes of each model, the set of prototypes of the model

proto-ResNet152 - 10 epochs appeared to be the most diverse and relevant for the artifacts we

annotated. Examples of such prototypes can be found in Section 9.1 of the Supplemental

Information.

We deduced that proto-ResNet152 - 10 epochs was the best model among all the models tested in

our experiment.

Figure 6. Comparison of probabilities from the model proto-ResNet152 trained on 10 epochs, on 416 scans

with artifacts from ABIDE 1 (30 very low quality scans in train set, 6 very low quality scans in validation set, 380

globally or locally corrupted in test set). 51 scans have local ringing or blurring (blue), 60 are globally corrupted
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but medium quality (orange), 36 are globally corrupted and very low quality (green), 269 are other less

corrupted scans (red).

Figure 6 shows that different types of image artifact correspond to different predicted probabilities

from our algorithm. The probabilities of globally corrupted scans are very close to 1, while the

probabilities of scans with local ringing or blurring are spread between 0.5-0.8, and other, less

corrupted scans have probabilities around 0.5.

We also evaluated the results on slices for the 66 scans from ABIDE 1 we annotated with local ringing

and/or local blurring. We found that in the extremities, the algorithm tends to predict the slices as

Class 1, even in the cases it should be Class 0. This means that slices near the edge of the

field-of-view containing little brain tend to be identified as corrupted by the algorithm. This might

explain why the global distribution of probabilities of the model proto-ResNet152-10ep is higher

than the ones of other models (see Figures 4 and Figure 5).

We also found an axis effect - while predictions for sagittal images were 89.3% accurate, accuracy for

coronal images were 86.4% accurate, and for axial views, 78.8% accurate. We also found that it might

be more difficult to automatically detect scans with only local areas of blurring because their global

probabilities are comparable to the probabilities of uncorrupted scans, and local blurring was not

always detected on slices. This might be due to fewer examples of this type of artifact in the training

set and the set of prototypes.

Importantly, no site effect was observed (see Table 4), and there was no difference in the global

distribution of probabilities between the three axes (sagittal, coronal, axial). These two points

validate the approach of our model: using prototypes enables better generalisation of the algorithm

to new data. Our findings show that our model is particularly efficient at detecting good quality scans

and globally corrupted scans.

good quality - 528
scans

globally medium
corrupted - 60 scans

local ringing or
blurring - 51 scans

other less corrupted
scans - 269 scans

CALTECH accuracy: 1.0
n scans: 34

na na accuracy: 0.0
n scans: 2

CMU accuracy: 1.0
n scans: 24

na na accuracy: 0.3333
n scans: 3

KKI accuracy: 1.0
n scans: 25

accuracy: 1.0
n scans: 3

na accuracy: 0.5714
n scans: 14

LEUVEN_1 accuracy: 0.9259
n scans: 27

na na accuracy: 0.5
n scans: 2

LEUVEN_2 accuracy: 0.9565
n scans: 23

na accuracy: 1.0
n scans: 1

accuracy: 0.2
n scans: 10

MAX_MUN accuracy: 0.9286
n scans: 28

accuracy: 1.0
n scans: 2

accuracy: 1.0
n scans: 1

accuracy: 0.8
n scans: 10

NYU accuracy: 0.9146
n scans: 82

accuracy: 1.0
n scans: 1

accuracy: 0.5882
n scans: 17

accuracy: 0.2714
n scans: 70
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OHSU accuracy: 0.9091
n scans: 22

accuracy: 1.0
n scans: 1

na na

OLIN accuracy: 0.75
n scans: 12

na accuracy: 1.0
n scans: 2

accuracy: 0.4286
n scans: 7

PITT accuracy: 0.9524
n scans: 21

na accuracy: 1.0
n scans: 5

accuracy: 0.3913
n scans: 23

SBL accuracy: 1.0
n scans: 26

na na accuracy: 0.0
n scans: 4

SDSU accuracy: 0.8
n scans: 10

accuracy: 1.0
n scans: 10

na accuracy: 0.8
n scans: 10

STANFORD na accuracy: 1.0
n scans: 10

accuracy: 0.8333
n scans: 12

accuracy: 0.6667
n scans: 6

TRINITY accuracy: 1.0
n scans: 34

accuracy: 1.0
n scans: 3

accuracy: 1.0
n scans: 1

accuracy: 0.0
n scans: 7

UCLA_1 accuracy: 0.8958
n scans: 48

accuracy: 1.0
n scans: 6

accuracy: 0.6667
n scans: 3

accuracy: 0.8
n scans: 5

UCLA_2 accuracy: 1.0
n scans: 7

accuracy: 1.0
n scans: 3

accuracy: 1.0
n scans: 1

accuracy: 0.4286
n scans: 7

UM_1 accuracy: 1.0
n scans: 27

accuracy: 1.0
n scans: 7

accuracy: 0.8
n scans: 10

accuracy: 0.1471
n scans: 34

UM_2 accuracy: 1.0
n scans: 13

na accuracy: 0.6667
n scans: 3

accuracy: 0.25
n scans: 12

USM accuracy: 1.0
n scans: 60

na na accuracy: 0.25
n scans: 4

YALE accuracy: 1.0
n scans: 5

accuracy: 1.0
n scans: 5

accuracy: 0.5
n scans: 4

accuracy: 0.1795
n scans: 39

Table 4. Predictions for each data collection site in the test set (908 scans) for the model proto-ResNet152

trained on 10 epochs.
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3.4 Validation on ABCD (2141 scans) dataset

Figure 7. Comparing the distribution of probabilities between the true QC categories (pass, questionable, fail)

for ABCD data (2141 scans), computed by proto-ResNet152 trained on 10 epochs.

ABCD (2141 scans) pass questionable fail

proto-ResNet152 10
epochs

Accuracy = 82.4% class 0: 255
class1: 304

Accuracy = 91.4%

MRIQC (on 410 scans
only)

Accuracy = 90.4% class 0: 43
class 1: 7

Accuracy = 76.1%

proto-ResNet152 10
epochs (removing scans
with 0.5 < proba < 0.6)

Accuracy = 96.4% class 0: 230
class 1: 195

Accuracy = 92.2%

Table 5. Accuracy of predictions for each of the manually determined QC categories (pass, questionable, fail)

for ABCD data (2141 scans)

The ABCD dataset has been annotated with gold-standard manual QC judgments thanks to work

groups facilitating data collection and quality control (Karcher and Barch, 2021). We tested our

algorithm on 2141 of these manually QCed scans. Figure 7 compares the distribution of probabilities

between the true QC categories (pass, questionable, fail) for these 2141 ABCD scans, computed by
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proto-ResNet152 trained on 10 epochs. It shows that the scores are globally distinct between pass

and fail categories, while scores of the category questionable are in-between, which is expected.

Table 5 shows that our algorithm showed better accuracy in predicting the category “fail” (accuracy

of 91.4% versus 76.1% for MRIQC). Conversely, MRIQC initially performed better than

proto-ResNet152 when predicting the category “pass” (accuracy of 90.4% versus 82.4%). Upon closer

inspection, we found that our algorithm predicted 311 scans with probabilities between 0.5 and 0.6,

mostly belonging to the category pass. When these scans are removed and only scans with

probabilities lower than 0.5 or greater than 0.6 are retained, accuracy was 96.4% for the pass

category. We therefore recommend a second verification (manual or with MRIQC) for scans with

“borderline” probabilities from our algorithm, between 0.5 and 0.6.

Among the questionable scans, 108 scans were annotated “use this one”, and our algorithm

predicted 66% of these scans in class 0 (good quality scans).

Supplementary validation of the algorithm using ABIDE 2 (799 scans) and on ADHD-200 (751 scans) is

included in Section 9.3 (Supplemental Information).

3.5 BIDS Docker app

We developed a BIDS-app (Gorgolewski et al., 2017) to share our model with the neuroimaging

community. It is available on the open-source platforms GitHub and DockerHub. It is ready-to-use by

following the instructions on: https://github.com/garciaml/BrainQCNet.

The optimal version is the one that is compatible with GPU compatible with CUDA. We found that

the average time to process a 3D sMRI scan was about 1 minute on a laptop with one GPU Nvidia

GEFORCE GTX 1060. Processing a scan with the MRIQC algorithm took about 45 minutes on the same

machine.

There is also a version available to work on CPU machines. We found that the average time to

process a scan was about 20 minutes on a laptop with Intel Core I7 processor.
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4. Discussion

In this age of “big data”, manual quality control of T1-weighted MRI scans is a time-consuming task

requiring substantial experience and training. Our goal was to further advance the automatic

detection of artifacts in structural brain MRI T1-weighted scans. We trained a Deep Learning

algorithm - ProtoPNet - with several different architectures - VGG19, ResNet152, DenseNet161 - to

classify good and poor quality scans. Our results indicate that the best model was able to detect poor

quality scans very well, whatever the architecture of the convolutional layer architecture. It also

predicted high quality scans very well. For scans with more localized rather than global artifacts, the

specific slices containing artifacts are also well detected by our models.

Across architectures, ProtoPNet with ResNet152 CNN architecture trained on 10 epochs showed the

best performance. On the first testing set (908 scans from ABIDE 1 (Di Martino et al., 2014)), this

model showed better performance in predicting the global class of a scan than the reference tool,

MRIQC (accuracy for high quality scans: 95.27% vs 91.1% for MRIQC; accuracy for medium and low

quality scans: 47.89% vs 41.58% for MRIQC). We also showed that the overlap between the

distributions of probabilities (percentage of slices classified as corrupted/Class 1) for good quality

scans and the distributions for scans with artifacts is much reduced with our model, which

demonstrates that, in the training dataset, our model better discriminates between scans with

artifacts and scans without.

On the second testing set (2141 scans from ABCD; Volkow et al., 2018; Karcher and Barch, 2021), our

proto-ResNet152 model showed excellent accuracy for medium and low quality scans: 91.4% vs

76.1% for MRIQC). MRIQC tended to have more False Negatives than our model in the sub-dataset

tested. For high-quality scans, our model showed very good prediction accuracy (82.4%), but this was

lower than that found for MRIQC (90.4%). When we examined this more closely, we found that the

mid-range of probabilities [0.5;0.6] predicted by our model contained a mixture of good quality scans

and moderately corrupted scans with more localized artifacts. If this range is excluded, our model

exhibits excellent accuracy for both high- and low-quality classes (accuracy for high quality scans:

96.4% ; accuracy for low quality scans: 92.2%). Accordingly, we suggest that the specific threshold

may need to be adjusted according to the needs of your study. Here, we set it at 0.5, such that scans

with probabilities >0.5 were predicted low quality, and scans with probabilities <0.5 were predicted

as high quality. If a researcher had a very generous sample and wanted to retain only the very best

quality scans, the threshold could conservatively be set at 0.5 - this would have the disadvantage of

removing some relatively good quality scans but the advantage of ruling out 91.4% of low quality

scans. If, on the other hand, a researcher had a smaller sample and less stringent quality

requirements (e.g., is not performing analyses of brain volume cortical thickness), a more liberal

threshold of 0.6 could be set. This would mean that some scans with delimited areas of poor quality

would be included in the study, but would offer the advantage that no good quality scans would be

unduly eliminated. A third possibility is for researchers to retain all scans that have a global

probability lower than 0.5, and to manually evaluate or run MRIQC on scans that have a global

probability between 0.5 and 0.6 to separate the good from moderately corrupted scans.

Conveniently, it is possible to manage this threshold on our app, as we explain in the documentation

(https://github.com/garciaml/BrainQCNet), which also explains how to use the app even if your data

is not BIDS-structured.
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In addition to increasing the accuracy of QC, our study demonstrates that Deep Learning is a

promising method for increasing the speed of scan quality evaluation while reducing the

computational resources required. To generate a global prediction for a single 3D scan on a GPU

machine, our model currently takes 1 minute to process one scan (vs. 40-45 minutes with MRIQC).

On a CPU machine, our model is slower but still relatively fast (20 minutes to process one scan).

Although the intermediates created by MRIQC processing may be used in further analyses of the

data, this processing is arguably wasteful of resources in the case of categorically poor quality scans

and large datasets. In obviating long processing time, our method is potentially more sustainable. In

order to further save resources and encourage sustainable practices, we have shared the global

scores predicted by our best model for the scans we used from ABIDE 1 and 2 (Di Martino et al.,

2014; Di Martino et al., 2017), ADHD200 (Bellec et al., 2017) and ABCD (Volkow et al., 2018; Karcher

and Barch, 2021). The scores are available through our github repository:

https://github.com/garciaml/BrainQCNet.

Another potential benefit of our model is its higher level of interpretability. The local detection of

corruption might help to identify specific regions that have a greater susceptibility to artifacts. This

may, for example, highlight a scanner quality issue that can be addressed, a brain area that is

particularly vulnerable to motion, or, in the case of a clinical group, it may suggest the need for

specific interventions to avoid data loss. We have made it easy to inspect regions exhibiting local

artifacts using our app. This involves reorienting your image to the canonical space RAS+ and using

the parameter “n_areas” of our app to inspect the probabilities that artifacts are present in different

areas of the image. More details on how to proceed can be found in the documentation

(https://github.com/garciaml/BrainQCNet).

Future work includes the improvement of this algorithm by running more experiments with other

CNN-bases like ResNet34 or DenseNet121 and examining the effects of prototype selection. In

addition, we plan to increase the training set as well as the variety of artifacts in the set of

prototypes. Investigating whether our approach could be applied to other MRI modalities is another

important future direction. Quality Control of fMRI is a huge challenge that is exacerbated by the

advent of Big Data. Future work will examine whether our approach can be adapted for data with a

temporal dimension so that it could be applied to fMRI data in a framewise manner to enable faster

and automated data quality control. Finally, to our knowledge, our BIDS-app is the first app that

applies Deep Learning to neuroimaging and is built to be used on CUDA GPU machines. By sharing

our code, we are providing the community with a new BIDS-app template for Deep Learning

applications, facilitating the sharing of Deep Learning models in the community and helping to

maximize reproducibility and collaboration.

5. Conclusions

In this work, we introduced a novel Deep Learning approach for the automatic evaluation of the

quality of brain structural MRI scans. Our method is scalable to big datasets by taking advantage of

new technologies like GPU machines with high-computing capacity. Our results highlighted the

reliability and the relevance of our Deep Learning model in assessing the global quality of 3D brain

T1-weighted scans, being stable across differences in acquisition protocols. It also showed satisfying
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detection of artifacts at the local level. Paths to improve our model include trying to combine CNN

architectures, or manually selecting the prototypes for the model. This approach could be further

adapted to functional MRI,and to other types of scans and organs.

Our model is already freely available for the global assessment of the quality of brain structural MRI

scans by the community via the app BrainQCNet (https://github.com/garciaml/BrainQCNet). Since all

our code is open-source, the app can be used as a template for future applications of Deep Learning

in Neuroimaging.
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9. Supplemental Information

9.1 Examples of activation maps

Figure 9. Examples of meaningful artifact map and prototype: the upper panel shows the input slice,

the lower panel shows the top-3 prototype for the model proto-RESNET152 trained on 10 epochs.
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Figure 10. Examples of non-meaningful artifact map and prototype: the upper panel shows the input

slice, the lower panel shows the top-1 prototype for the model proto-VGG19 trained on 30 epochs.
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9.2 Pipeline steps
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9.3 Supplementary validation using ABIDE 2 (799 scans) and ADHD-200 (751 scans).

To further validate our tool using 799 scans from ABIDE 2 dataset, we ran the MRIQC classifier on this

dataset and treated the results as ground truth. We obtained an accuracy score of 75.5% and a ROC

AUC score of 0.72. Taking the MRIQC classifier results as ground truth introduces a bias since in their

paper they showed that they had an accuracy score around 75% on dataset including ABIDE.

However, our result shows that our algorithm tends to predict the quality of scans well.

The dataset ADHD200 provided manual annotations for 751 scans. We ran our algorithm on this

dataset, and obtained an accuracy score of 79.2% and a ROC AUC score of 0.76. These results also

show that our algorithm predicts the quality of scans reliably.

31

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 14, 2022. ; https://doi.org/10.1101/2022.03.11.483983doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.11.483983
http://creativecommons.org/licenses/by/4.0/

