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Abstract
Between-participant differences in head motion introduce systematic bias to resting state fMRI brain-wide
association studies (BWAS) that is not completely removed by denoising algorithms. Researchers who study
traits, or phenotypes associated with in-scanner head motion (e.g. psychiatric disorders) need to know if
trait-functional connectivity (FC) correlations are biased by residual motion artifact in order to avoid reporting
false positive results. We devised an adaptable method, Split Half Analysis of Motion Associated Networks
(SHAMAN), to assign a motion impact score to specific trait-FC correlations. The SHAMAN approach
distinguishes between motion artifact causing false positive vs false negative bias. SHAMAN was > 95%
specific at sample sizes of n = 100 and above. SHAMAN was 95% sensitive to detection of false positive
motion impact score at sample sizes of n = 3,000 but only 59% sensitive to detection of false negative motion
impact score, making it most useful for large BWAS. We computed motion impact scores for trait-FC
correlations with 45 demographic, biophysical, cognitive, and personality traits from n = 7,270 participants in
the Adolescent Brain Cognitive Development (ABCD) Study. After standard denoising with ABCD-BIDS and
without motion censoring, 60% (27/45) of traits had significant (p < 0.05) false positive motion impact scores
and 36% (16/45) of traits had false negative motion impact scores. Censoring at framewise displacement (FD)
< 0.2 mm reduced the proportion of traits with significant false positive motion impact scores from 60% to 2%
(1/45) but did not decrease the number of traits with significant false negative motion impact scores.

Introduction
Head motion is the largest source of artifact in structural and functional MRI (fMRI) signals1–20. The technical
challenge posed by motion cannot be overstated and has motivated the creation of behavioral interventions
9,21–24 and real-time motion tracking software to reduce the amount of in-scanner head motion 5,25. Even with
highly compliant participants, involuntary sub-millimeter head movements systematically alter fMRI data
6,14,17,19,20. Unfortunately, non-linear characteristics of MRI physics make removal of motion artifact during
post-processing difficult 26. Compared to task fMRI, resting-state functional connectivity (FC) is especially
vulnerable to motion artifact because the timing of the underlying neural processes is unknown
2,4,6,9,10,12,14,19,20,27–30. The effect of motion on FC is spatially systematic, causing decreased long-distance
connectivity and increased short-range connectivity, most notably in the default mode network 19,20,27,28.

Results from early studies of children, older adults, and patients with neurological or psychiatric disorders have
been spuriously related to motion 6,19,29,30. For example, motion artifact systematically decreases FC between
distant brain regions 28 leading some investigators to conclude that autism decreases long-distance FC when,
in fact, their results were due to increased head motion in autistic study participants. These cautionary findings
have motivated the creation of numerous approaches to mitigate motion artifact including global signal
regression 28,31, motion parameter regression 29, spectral filtering, respiratory filtering 25,32,33, principal
component analysis 1,11, independent component analysis 7,15,34, multi-echo pulse sequences 8, despiking of
high-motion frames 13, and combinations thereof 3,4,16,25. However, given the complexity of these approaches, it
is difficult to be certain that enough motion artifact has been removed to avoid spurious (false positive)
interpretation of trait-FC correlations and detect real trait-FC correlations (avoid false negatives).

It is increasingly common for brain-wide association studies (BWAS) involving many thousands of participants
(e.g. HCP, ABCD, UK Biobank) to provide data that have already been processed to remove motion 35–38;
however, even in these cases there is some choice as to how much data to retain or to censor. In such large
studies, obtaining the raw data and re-applying a different motion processing method is computationally
expensive. Excluding high-motion fMRI frames (timepoints) from analysis by censoring is a post-hoc approach
shown to further reduce residual motion artifact 14,20,27,29. Power et al. 39 note a natural tension between the
need to remove some motion-contaminated volumes to reduce spurious findings (false positive inference) but
not so many volumes as to bias the sample distribution of a trait by systematically excluding individuals with
high motion who may exhibit important variance in the trait of interest (e.g., low scores on attention measures
associated with greater motion).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 17, 2022. ; https://doi.org/10.1101/2022.12.16.520797doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?QeHOp9
https://www.zotero.org/google-docs/?JGecHD
https://www.zotero.org/google-docs/?Y5DtSM
https://www.zotero.org/google-docs/?LxtaHu
https://www.zotero.org/google-docs/?ndDCnD
https://www.zotero.org/google-docs/?uK7YXt
https://www.zotero.org/google-docs/?e9eE5a
https://www.zotero.org/google-docs/?Mt0ykD
https://www.zotero.org/google-docs/?6pL9GD
https://www.zotero.org/google-docs/?ggIIDg
https://www.zotero.org/google-docs/?7VFqys
https://www.zotero.org/google-docs/?DRYRX2
https://www.zotero.org/google-docs/?y32QJn
https://www.zotero.org/google-docs/?9ThVAm
https://www.zotero.org/google-docs/?MjPnC1
https://www.zotero.org/google-docs/?d2kY4R
https://www.zotero.org/google-docs/?EMHWD5
https://www.zotero.org/google-docs/?gm7rtg
https://www.zotero.org/google-docs/?mbCkJw
https://www.zotero.org/google-docs/?JPrOnv
https://doi.org/10.1101/2022.12.16.520797


This difficulty in censoring threshold selection arises in part because most approaches for quantifying motion
are agnostic to the hypothesis under study 6,14,19,20,29. However, some traits or groups of participants are more
strongly correlated with motion than others. For example, study participants with attention-deficit hyperactivity
disorder or autism have higher in-scanner head motion than neurotypical participants 5,6,9,30. Even when much
of the overall signal variance associated with motion has been removed, inferences about such
motion-correlated traits may still be significantly impacted by motion artifact 6,9,18,20,29,30. Therefore, in addition to
standard approaches for quantifying motion, methods for quantifying trait-specific motion artifact in FC are
needed.

Approaches for quantifying the association of specific trait-FC correlations with motion include measuring
changes in distance-dependent correlations at different levels of motion censoring 27,28, measuring spatial (i.e.
across edges) similarity of trait-FC effects with motion-FC effects 29,30, and measuring differences in trait-FC
effects between groups matched according to levels of motion 6,19. However, these measures do not establish a
threshold for acceptable or unacceptable levels of trait-specific motion. Nielsen et al. 12 proposed using support
vector machines to test whether head motion is significantly predicted by FC, but the method applies only to
high-order multivariate models of trait-FC effects. Siegel et al. 18 proposed conceptualizing the relationship
between motion and trait-FC correlations by comparing within-participant and between-participant variance in
the trait-FC correlations explained by motion. Siegel’s original method was limited because it required repeated
resting-state fMRI (rs-fMRI) scans of the same participant on different days, and it used a simple correlation
measure that could not account for covariates or distinguish between motion artifacts contributing to false
positive vs false negative results.

Thus, we developed a novel method for detecting trait-specific motion impact score that operates on one or
more rs-fMRI scans per participant and can be adapted to model covariates. We capitalize on Siegel et al.’s 18

observation that traits (e.g. weight, intelligence) are stable over the timescale of an MRI scan whereas motion
is a state that varies from second to second. The proposed Split Half Analysis of Motion Associated Networks
(SHAMAN) capitalizes on the relative stability of traits over time by measuring difference in the correlation
structure between split high- and low-motion halves of each participant’s fMRI timeseries. When the trait-FC
correlations are independent of motion, the difference in each half of the connectivity will be not-significant
because traits are stable over time. A significant difference is detected only when state-dependent differences
in motion have an impact on the trait’s connectivity. Motion-induced differences that enhance the trait-FC
correlations contribute to false-positive inference, whereas motion-induced differences that reduce the trait-FC
correlations are associated with false-negative inference. Permutation of the timeseries and non-parametric
combining 40 across pairwise connections yields a motion impact score and a p-value distinguishing significant
from not-significant impacts of motion on trait-FC correlations.

Recently the Adolescent Brain Cognitive Development (ABCD) Study collected up to 20 minutes of rs-fMRI
data on 11,874 children ages 9-10 years 21,41,42 with extensive demographic, biophysical, and behavioral data
43,44. Such large data sets have made it possible to quantify reproducibility in resting-state fMRI, and they have
revealed that the true effect sizes of brain-wide association studies (BWAS) are smaller than previously
thought due to sampling variability 45. Failure to consider head motion is another source of inconsistent results.
Thus, we first characterized the effectiveness of standard denoising approaches at reducing motion artifact.
Then we considered the residual trait-specific impact of head motion on FC in the high-quality ABCD data after
denoising and varying levels of post-hoc motion censoring.

Results
The Effect of Residual Motion is Large Even After Denoising and Censoring
In order to characterize the impact of residual head motion on trait-FC correlations, we first performed
preliminary analyses to quantify how much residual motion was left in the data after denoising. ABCD-BIDS is
the default denoising algorithm for pre-processed ABCD data 25,36. It includes global signal regression,
respiratory filtering, spectral (low-pass) filtering, despiking, and regressing out the motion parameter
timeseries. The relative performance of ABCD-BIDS was evaluated by comparing how much of the
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between-participant variability in the fMRI timeseries (averaged across regions of interest) was explained by
head motion (framewise displacement, FD) before and after applying ABCD-BIDS (Figure S1). After minimal
processing 38 (i.e. motion-correction by frame realignment only), 9% of signal variance was explained by head
motion (r = 0.29). After further denoising using ABCD-BIDS (respiratory filtering, motion timeseries regression,
despiking/interpolation of high-motion frames), less than 1% of signal variance was explained by head motion
(r = 0.03). Therefore, ABCD-BIDS achieved a relative reduction in the proportion of signal variance related to
motion of 98.9% compared to minimal processing alone (see Methods).

However, even after denoising with ABCD-BIDS, it was still possible to detect large between-participant
differences due to head motion. The average FC matrix across all participants is shown in Figure 1a,b. The
residual motion-FC effect was quantified by regressing each participant’s FD (averaged over all resting-state
scans) against their FC to generate a motion-FC matrix (Figure 1c,d). The average FC matrix and motion-FC
matrix were compared by computing the correlation between their edges (pairwise connections). The
motion-FC matrix had a strong, negative correlation of r = -0.63 with the average connectivity matrix. This
strong, negative correlation persisted even after motion censoring at FD < 0.2 mm (r = -0.55). Thus, across all
functional connections, as a participant moved more, the magnitude of that participant’s functional connectivity
tended to decrease.

The decrease in FC due to head motion was larger than the increase or decrease in FC related to traits of
interest (Figure 1e,f). The largest motion-FC effect size for a single connection was |r| = 0.10. More
conservatively, the 98th percentile for the motion-FC effect size was |r| = 0.04. While these effect sizes were
small in absolute terms, Marek et al.45 have shown that the largest 1% of univariate trait-FC effect sizes in
ABCD are on the order of |r| = 0.06. Of the 45 variables we evaluated, parental income bracket had the largest
trait-FC effect size at |r| = 0.06 (98th percentile |r| = 0.02). With motion censoring at FD < 0.2 mm the largest
motion-FC effect was |r| = 0.08 (98th percentile |r| = 0.03) and the largest effect size for parental income was |r|
= 0.06 (98th percentile |r| = 0.02). Therefore, even with motion denoising and censoring, the motion-FC effect
was large in relation to trait-FC effects.
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Figure 1: Average connectivity matrix, motion-connectivity matrix, and effect sizes. (a) The average
(across participants) correlation matrix for functional connectivity (FC), after denoising with ABCD-BIDS without
frame censoring; (b) and with frame censoring at framewise displacement (FD) < 0.2 mm. (c) The motion-FC
correlation matrix, i.e. correlation matrix for functional connectivity (FC) with framewise displacement (FD)
without frame censoring (d) and with censoring at FD < 0.2. (a,c) The upper triangular parts of the FC
connectivity matrices were edge-for-edge correlated at r = -0.63. (b,d) After motion censoring at FD < 0.2 mm,
the average FC and motion-FC correlation matrices were edge-for-edge correlated at r = -0.55. (e) The effect
size of the motion-FC correlation (arrow) is plotted relative to the empirical distribution of effect sizes for the 45
traits in this study without motion censoring and (f) with motion censoring at framewise displacement (FD) <
0.2 mm. Effect sizes were computed as the largest (98th percentile) normalized difference in functional
connectivity (correlation, |r|) across edges for each trait. Networks: DMN = Default Mode Network, VIS =
Visual, FPN = Frontoparietal Network, DAN = Dorsal Attention Network, VAN = Ventral Attention Network, SAL
= Salience, CON = Cingulo-Opercular Network, SMH = Somatomotor Hand, SMM = Somatomotor Mouth, AUD
= Auditory, MEM = Parietal Memory Network, CTXT = Context, ORBF = Orbitofrontal, SUBCORT = subcortical
regions.

Most Traits Were Significantly Correlated with Head Motion
Surprisingly, many seemingly unrelated traits were shown to be correlated with head motion in the Human
Connectome Project (HCP). 18 In ABCD, 87% (39/45) of traits or variables evaluated showed significant (p <
0.05) correlations between the trait (e.g. BMI) and head motion (FD, in mm; Table S1). WISC-V (Wechsler
Intelligence Scale for Children, 5th edition) matrix reasoning subscore 46 had the highest trait-FD correlation at
r = -0.12, p < 0.001, and Child Behavioral Checklist (CBCL) somatization subscore had the least trait-FD
correlation  at r = 0.0004 (not significant).

BMI 47 and matrix reasoning subscore 46 were selected as exemplar traits. Both exhibited significant trait-FD
correlations (Figure S2). Children with higher BMI exhibited more in-scanner head motion (r = 0.09, p < 0.001).
Children with higher matrix reasoning scores had lower head motion (r = -0.12, p < 0.001).

SHAMAN Detected the Impact of Motion on Trait-FC Correlations in Simulated Data
To clarify and validate the principle of the SHAMAN approach, a generative model was used to simulate fMRI
timeseries data with experimentally-controlled amounts of "BRAIN" trait-FC correlations, “MOTION” trait-FC
correlations, and relationship between them. Simulation of non-linear relationships between the trait-FC
correlations and motion caused denoising to fail and for SHAMAN to detect a significant impact of residual
motion on trait-FC correlations (motion impact score) as depicted in Figure 2. The SHAMAN algorithm is
described further in the Methods, and simulation methods are described further in the Simulation Supplement.
Briefly, the FC matrix for a simulated participant contained both "BRAIN" and "MOTION" correlations (Figure
2a), reflecting the failure of denoising to completely remove the "MOTION" correlations. The participant's fMRI
timeseries was split into high- and low-motion halves based on the FD timeseries. More "MOTION" was visible
in the FC matrix from the high-motion half of the timeseries compared to the low-motion half, whereas the
amount of “BRAIN” did not vary over time and was therefore was equal between halves (Figure 2b). When the
low-motion trait-FC matrix was subtracted from the high-motion trait-FC matrix, the identical "BRAIN" trait-FC
correlations canceled out in the difference FC matrix (Figure 2d) whereas the “MOTION” did not. Finally, the
"BRAIN" trait was regressed against the difference FC matrices to generate a matrix of motion impact score
(Figure 2e).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 17, 2022. ; https://doi.org/10.1101/2022.12.16.520797doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?ys7mCM
https://www.zotero.org/google-docs/?f7hSMv
https://www.zotero.org/google-docs/?BCFxM9
https://www.zotero.org/google-docs/?P3nOGo
https://doi.org/10.1101/2022.12.16.520797


Figure 2: Diagram of the SHAMAN (Split-Half Analysis of Motion-Associated Networks) algorithm using
simulated data. The simulated timeseries of brain signal generates the “BRAIN” edge matrix, and the
simulated timeseries of motion generates the “MOTION” edge matrix. (a) A single participant’s simulated
functional connectivity (FC) matrix and motion (framewise displacement, FD) timeseries. (b) Each participant’s
fMRI timeseries data is split into high- and low-motion halves using the FD timeseries. High- and low-motion
FC matrices and corresponding motion timeseries are shown for the simulated participant. (c)
Between-participant variation in motion is regressed out of each half edge matrix to generate residual FC
matrices. The difference between the high- and low-motion residual FC matrices is shown for the simulated
participant. (d) The trait of interest is regressed against the difference FC matrices. (e) Motion impact score
specific to the trait in (d).
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Residual Motion Inflates Functional Connectivity Associations with Biophysical Traits
We found that residual motion artifact inflated the effect size of many traits, especially the biophysical traits of
BMI, age, sex, weight, and height. Trait-FC correlations were calculated separately for each of these traits on
fMRI data after denoising with ABCD-BIDS using conventional methods with mean framewise displacement
(FD) as a covariate to control for between-participant differences in motion (e.g., FC ~ BMI + FD). Without
frame censoring, all five biophysical traits had significant false positive motion impact scores, meaning that
their trait-FC correlations were significantly (p < 0.05) greater due to the impact of residual head motion. Three
biophysical traits, BMI, sex, and weight, also had significant false negative motion impact scores, meaning that
motion inflated trait-FC correlations in some networks but suppressed them in other networks (Tables S2, S3).

BMI was selected as an exemplar trait to illustrate a false positive motion impact score. The FC matrix for the
trait-FC correlations of BMI (FD as a covariate, without motion censoring) was compared to its motion impact
score at each edge in Figure 3 and projected onto the cortical surface using root mean square connectivity 48 in
Figure 4. Many of the network pairs (e.g. on the diagonal: default mode, visual, dorsal attention, and
cingulo-opercular) had a negative trait-FC correlation and a negative motion impact. Since these trait-FC
correlations and corresponding motion impacts were both in the same direction (negative in this case), the
impact of motion was to inflate the size of the trait-FC correlations. An overall false positive motion impact
(Stouffer's Z40) score for BMI of 91 was calculated using omnibus combining across the entire connectivity
matrix to control for multiple comparisons. An omnibus significance of p < 0.001 was obtained using
permutation.

Note that regressing against the inverse of BMI, a trait for which high values were associated with low
in-scanner head motion, caused the trait-FC correlations of inverse-BMI and the motion impact to both be
positive instead of negative (data not shown). Since the trait-FC correlations and corresponding motion impact
were still both in the same direction (positive in this counterexample), the overall motion impact score was still
false positive.
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Figure 3: Trait-specific impact of motion on functional connectivity matrices. Data are shown for two
exemplar traits, body mass index (BMI, left) and WISC-V matrix reasoning score (right). (a) Resting state
functional connectivity (RSFC) matrix for BMI. (b) Connectivity matrix for matrix reasoning. (c) Motion impact
score for BMI. The overall (over the entire matrix, omnibus Stouffer’s Z) false positive motion impact score for
BMI was 91, p < 0.001. (d) Motion impact score for WISC-V. The omnibus false negative motion impact score
for WISC-V was 55, p < 0.001. All measures were computed after motion processing with ABCD-BIDS and
without frame censoring. Connectivity matrices were computed with framewise displacement (FD) as a
covariate. Networks: DMN = Default Mode Network, VIS = Visual, FPN = Frontoparietal Network, DAN =
Dorsal Attention Network, VAN = Ventral Attention Network, SAL = Salience, CON = Cingulo-Opercular
Network, SMH = Somatomotor Hand, SMM = Somatomotor Mouth, AUD = Auditory, MEM = Parietal Memory
Network, CTXT = Context, ORBF = Orbitofrontal, SUBCORT = subcortical regions.
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Residual Motion Can Inflate and Suppress Associations with Demographic and Behavioral Trait
WISC-V matrix reasoning score was selected as an exemplar trait to illustrate a false negative motion impact
score (Figures 3, 4). The overall false negative motion impact score for WISC-V of 55 was significant at
(omnibus) p < 0.001. The false positive motion impact score for WISC-V was not significant. The trait-FC
correlation matrix for WISC-V (FD as a covariate, without motion censoring) and its respective motion impact
scores are shown in Figure 3 and projected onto the cortical surface in Figure 4. In networks where the motion
impact was significant (e.g. sensorimotor hand), it trended in the opposite direction (positive vs negative) of the
corresponding trait-FC correlation, thus suppressing the trait-FC correlation.

In total, 53% (20/38) of demographic and behavioral traits had significant false positive motion impact scores,
and 32% had significant false negative motion impact scores, prior to frame censoring (Table S2, S3). Broken
down further by category, there was a false positive impact of motion for 20% (1/5) of demographic traits, 60%
(6/10) of cognitive traits, and 59% (13/22) of personality traits. There was a false negative impact of motion for
67% (4/6) of demographic traits, 30% (3/10) of cognitive traits, and 22% (5/22) of personality traits. Thus,
demographic and behavioral traits were less impacted by residual motion than biophysical traits.

Figure 4: Trait-specific impact of motion on functional connectivity (FC). Top: Parcel-wise FC, computed
as the root mean square (RMS) of connectivity values for each parcel/node in the connectivity matrix 48 for (a)
body mass index (BMI) and (b) WISC-V matrix reasoning score. Bottom: Motion impact score (omnibus
Stouffer’s Z 40,49,50, higher = more motion) for (c) BMI and (d) WISC-V. Spurious inflation of the trait-FC
correlation by motion is labeled False + (positive, in orange). Suppression of trait-FC correlations by motion is
labeled False - (negative, in blue).
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Frame Censoring after Denoising Reduces False Positives due to Motion Artifact
Frame censoring is a simple, post-hoc approach to address residual motion artifact after motion processing;
however, censoring also has the potential to bias sample proportions through exclusion of high-motion
participants 14,20,27,29. The SHAMAN algorithm was used to quantify the tradeoff between reduction in motion
impact score and sampling bias due to the exclusion of high motion participants (Tables S2-S4).

Prior to frame censoring, 7,270 participants had at least 8 minutes of rs-fMRI data and were not missing data
on any of the 45 trait traits studied. Frame censoring at FD < 0.2 mm (filtered for respiratory motion)25,32,33 and
excluding participants with < 8 minutes of data remaining excluded 11% (818/7270) of participants. Exclusion
of these participants caused the average values of only two traits, gender and number of MRI runs completed,
to shift by more than 1% (Figure S3) compared to the uncensored sample of participants. On the other hand,
censoring at FD < 0.2 reduced the number of traits with false positive motion impact scores from 60% (27/45)
to just one physical trait, height, see Figure 5 (Tables S2, S3).

More stringent censoring at FD < 0.1 mm (filtered) did not reduce the number of traits with false positive motion
impact score any further, but exclusion of 36% (2712/7270) participants at FD < 0.1 shifted the average values
of 24% (11/45) of traits by > 1%, compared to no censoring (Table S4). For example, boys moved their heads
0.07 mm more, on average (mean FD), than girls (r = 0.10, p < 0.001). At a very stringent motion censoring
threshold of FD < 0.1, the study population shifted from majority boys (52.6%) to majority girls (51.6%; Figure
S3). Motion censoring at FD < 0.1 did reduce false negative motion impact from 44% (20/45) at FD < 0.2 to
20% (9/45) at FD < 0.1.
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Figure 5: Effects of frame censoring on trait-specific motion distortion. Motion impact score (omnibus
Stouffer’s Z, higher = more motion) for traits of a given class at different levels of motion censoring. The
significance threshold is indicated by a gray line. (a) False positive motion impact score. (b) False negative
motion impact score. Trait classes are demographic (number of people living in household, combined parental
income bracket, parents’ marital status, highest parental education level, and residential deprivation index),
physical (sex assigned at birth, age in months, height, weight, and body mass index), measures from the Child
Behavior Check List (CBCL), and measures from the NIH cognitive toolbox.
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Motion Impact Was Distributed Across Brain Regions
Motion impact scores were computed at multiple levels of granularity: for individual pairwise connections
(edgewise), combined (using omnibus Stouffer's Z) across edges in a region or node (parcelwise), or combined
across the whole brain. Significance at the whole-brain level could theoretically be driven by extremely high
motion impact scores concentrated in a few regions or by high motion impact scores distributed across multiple
brain regions. To quantify the regional distribution of motion impact score, the whole-brain motion impact score
was recalculated after iteratively excluding the brain region with the highest motion impact score until the
whole-brain motion impact score was no longer significant. The number of regions excluded was the number of
regions significantly contributing to the impact of motion across the brain. We found that, especially for false
positive motion impact scores, significant impacts of motion were distributed across many brain regions. BMI
and matrix reasoning were selected as exemplar traits to visualize the number of motion-impacted regions
needed to detect a significant impact of motion across the whole brain (Figure S4). For BMI, 39% (155/394) of
regions contributed to false positive motion impact score whereas < 1% of regions contributed to false negative
motion impact score. For matrix reasoning, 19% (76/394) of regions contributed to false negative motion
impact score; the whole-brain false positive motion impact score for matrix reasoning was not significant.

Trait-FD Correlation Did Not Independently Predict Trait-FC Correlation
Calculating motion impact score is computationally intensive and might be unnecessary if spurious trait-FC
correlations could be predicted from the trait-FD correlation alone. A post-hoc analysis was performed to test
whether trait-FD correlation predicted motion impact score. Large trait-FD correlation failed to predict false
positive motion impact score (r = 0.02, not significant) and therefore did not detect spurious trait-FC
correlations without the aid of SHAMAN (Figure S5). This was true even when limiting analysis to behavioral
traits, which tend to be of greatest interest to researchers (33 traits, r = 0.15, not significant). Large trait-FD
correlation was correlated with false negative motion impact score (r = 0.33, p = 0.03).

Testing for Trait-specific Motion Effects Requires Thousands of Participants
Our analyses were conducted on a large sample (n = 7,270). We performed bootstrapping (sampling with
replacement) at different sample sizes to assess the sensitivity, or statistical power, of SHAMAN to detect
significant motion impact scores in our exemplar traits, BMI and matrix reasoning, as a function of sample size.
As expected, power increased as the sample size increased (Figure S6). A sample size of about n = 2,000
participants was powered (α = 0.05) to detect a false positive motion impact score for BMI in 89% of
simulations. At n = 3,000, false positive motion impact score was successfully detected 97% of the time, par for
expectation with a significance threshold of α = 0.05. The false negative motion impact score for matrix
reasoning was more difficult to detect, with successful detection in only 92% of simulations at n = 6,000. The
need for thousands of participants to avoid false positive inference is consistent with recent fMRI studies.45

Motion Impact Score is Specific to Motion Artifact
To be useful, SHAMAN must also be specific, producing not-significant motion impact scores when trait-FC
correlations are not biased by residual motion artifact. The randomly-assigned participant ID was used as a
trait to simulate a trait-FC correlation not biased by residual motion artifact. Participant ID was not significantly
correlated with FD (r = 0.0006). We performed bootstrapping with participant ID at different sample sizes to
assess SHAMAN’s specificity. At the smallest sample size of n = 100 participants the rate of incorrect detection
of a significant motion impact score (either false positive or false negative) with the random participant ID was
3.9%, par for expectation with a significance threshold of α = 0.05 (Figure S6). The rate of incorrect detection
was zero at each of the larger sample sizes tested up to n = 6,000 participants.
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Discussion
The Impact of Motion on Brain-Wide Association Studies is Widespread and Trait Dependent
It has been proposed that head motion likely affects inference about some trait-FC correlations more than
others 6,19,27–30, but only a few studies 12,18 have explored the differential impact of motion on specific trait-FC
correlations within a statistical framework. We build upon this prior work 18 by employing a novel metric, motion
impact score, to quantify the impact of residual in-scanner head motion on trait-FC correlations for 45
demographic, biophysical, intelligence, and personality traits within the ABCD study. Similar to findings in the
Human Connectome Project (HCP data, 18 we find that, even after denoising with ABCD-BIDS a large
proportion (60%) of trait-FC correlations in the ABCD data (n = 7,270) are significantly inflated by residual head
motion when motion censoring is not used, and that post-hoc motion censoring is an effective strategy for
mitigating residual motion.

Motion May Negatively Affect the Signal-to-Noise-Ratio (SNR)
We find that, after denoising, the motion-FC connectivity matrix has a large effect size (max |r| = 0.10) and is
strongly anti-correlated with the between-participant average connectivity matrix (r = -0.63), thus potentially
impacting the interpretation of many traits whose FC correlations are shaped by the average connectivity
matrix. The most parsimonious explanation for this motion-connectivity anti-correlation is that data from
participants with higher motion have a lower signal to noise ratio (SNR). Decreased SNR could occur due to
the biophysical characteristics of head motion increasing the proportion of noise relative to brain signal
captured by the MRI scanner. It is also possible that denoising algorithms inadvertently remove more brain
signal from high-motion data than they do from low-motion data. Designers of denoising algorithms may wish
to evaluate not only how much motion is removed from the data, but also how the SNR of the data are affected
by processing.

Other factors contributing to the observed motion-FC connectivity matrix likely include distance-dependent
attenuation of connectivity overlapping the average connectivity matrix. 39 Propensity of an individual to move is
itself a heritable trait,51–53 and some 54 have even proposed that intrinsic differences in FC related to movement
are encoded in the connectivity matrix. While our findings do not exclude the possibility that motion has an
intrinsic neurobiological basis, we find it improbable that motion's trait-FC effect would have a larger effect size
than any other trait-FC effect.

Biophysical Traits Were Most Likely to be Confounded by Motion Distortions
While we find that many trait-FC relationships (60%) are spuriously inflated by motion, it is remarkable that all
five biophysical trait-FC relationships (BMI, age, sex, weight, and height) are significantly inflated by motion.
Biophysical traits are also the only class for which we detect significant false positive motion impact after
censoring. As seen in Figure 3 illustrating BMI, the largest deviations in the trait-FC connectivity matrices for
biophysical traits cluster along the diagonal and have a large degree of similarity to both the average (across
participants) FC matrix and the FD-FC connectivity matrix. It is possible that the biophysical traits are directly
related to motion (e.g. larger head sizes are capable of greater displacement), affect signal to noise ratio in a
similar way to motion (e.g. excess adipose tissue attenuates radiofrequency energy, decreasing SNR), or that
biophysical traits serve as a proxy for other behavioral traits related to movement. If the relationship between
biophysical traits and SNR or behavioral covariates could be modeled then their true trait-FC relationships
could be identified.

Motion Censoring Reduces False Positives
Motion censoring at FD < 0.2 mm (filtered for respiratory artifact) is very effective at mitigating false positive
motion impact score (Figure 5, Tables S2, S3) and results in relatively little sample bias due to participant
exclusion (Figure S3, Table S4). Siegel et al. 18 also observed decreased residual impact of motion after
framewise censoring in the HCP data. Therefore, motion censoring at FD < 0.2 mm (filtered) is an excellent
way to avoid making false positive inferences about trait-FC correlations.
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Even more stringent censoring at FD < 0.1 (filtered) does not further reduce false positive motion impact score.
However, censoring at FD < 0.1 does improve false negative motion impact score (FIgure 5, Tables S2, S3),
potentially offsetting concerns about loss of power from excluding data and participants. The potential for
sampling bias 39 and loss of power from motion censoring might be further offset by oversampling from
high-motion groups (e.g. patients with psychiatric disorders) to increase the amount of usable data per
high-motion participant and number of high-motion participants with usable data after censoring. For example,
a study could recruit more participants from the high-motion group, scan them for longer, and employ real-time
adaptive quality assurance strategies such as FIRMM 5 to ensure collection of sufficient data to maintain the
desired power after frame censoring.

Motion Reduces Statistical Power
Statistical power is the ability to reject the null hypothesis when it is actually false, or the ability to avoid false
negative inference. We show that motion predisposes to false negative inference about trait-FC correlations for
many traits, even after motion censoring. Therefore, motion reduces statistical power for specific traits in a way
that is not accounted for by conventional power analysis methods. While researchers may be more attentive to
false positive results, false negative results and statistical power are also important. For example, failure to
detect an association between lead exposure and neurotoxicity would contribute to incorrect policy decisions
about lead mitigation, increased lead exposure, and adverse public health outcomes. False negative results
are especially damaging when they arise in large brain wide associations studies (BWAS, e.g., ABCD), which
are assumed to be adequately powered.

SHAMAN Facilitates Region of Interest (ROI) Analyses
It is common to select a priori regions or nodes of interest on which to perform FC analyses. ROI analyses may
also be beneficial for excluding spatially-structured motion artifacts. Using non-parametric combining,
SHAMAN can assign a motion impact score to a single node or a subset of nodes, thereby providing insight
into whether a priori regions of interest are impacted by residual motion artifact, and facilitating analysis of a
few nodes which do not have a significant motion impact score even when the whole brain does have a
significant motion impact score. While ROI analysis is typically used to limit the number of statistical tests or
comparisons, as the brain can be subdivided into thousands of combinations of ROIs, the number of possible
statistical tests/comparisons is vast. Therefore, caution is advised when interpreting “cherry picked” regions of
interest with a low motion impact score, especially for traits where motion impact score is widely distributed
over a large proportion of nodes (e.g., BMI: 39% of nodes).

SHAMAN Can Quantify Statistical Significance of Motion Distortion
The problem of estimating motion artifact is intractable because the precise relationship between head motion
and fMRI signal is not known26. Denoising algorithms must therefore make assumptions about the motion-fMRI
relationship. For example, regressing the motion parameters out of the fMRI signal29 makes a strong, linear
assumption about the motion-fMRI relationship. Detecting residual motion after denoising is especially
challenging because the same assumptions used by the denoising algorithm cannot be reused. For example,
regressing the motion parameters out of the fMRI signal a second time will not remove additional motion
artifact. SHAMAN approaches this problem by making the weak but reasonable assumption that the
high-motion half of the data will have the same correlation structure as the low-motion half except for artifact
from motion. Therefore, while quantifying residual motion precisely is impossible, SHAMAN detects when the
impact of motion on a trait-FC relationship is significant. In theory the residual impact of motion might be
significantly non-zero but small enough that it would not cause false inference. However, consistent with prior
work, 45 we show that the motion-FC effect is similar in magnitude to the effect size of most trait-FC
correlations. Therefore, a significant motion impact score is likely to cause false inference.
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SHAMAN Predicts Residual Motion Impact Better Than Trait-motion Correlation Alone
This study was motivated by the hypothesis that trait-motion correlations for traits (e.g. BMI) correlated with
head motion would be more likely to be spuriously related to motion. Are strong trait-FD correlations sufficient
to predict spurious trait-FC correlations? Traits highly correlated with motion were more likely to have their
trait-FC relationships obscured by motion, limiting statistical power and creating a bias toward false negative
results. However, strong trait-FD correlations did not predict which trait-FC relationships would be spuriously
inflated by motion, biasing toward false positive results. Therefore, SHAMAN provides vital information about
the risk of false-positive inference due to residual trait-specific motion impact beyond the trait-motion
correlation alone.

Detecting the Impact of Residual Trait-Specific Motion Requires Thousands of Participants
Marek et al. 45 showed that thousands of participants are needed to measure trait-FC correlations reproducibly.
Similarly, we find that 2,000-3,000 participants are needed to detect the false positive impact of motion on
BMI-FC correlations, and 6,000 participants are needed to detect the false negative impact of motion on matrix
reasoning-FC correlations (Figure S6). We postulate that false negative motion impact requires larger sample
sizes for detection because affected trait-FC correlations would have smaller effect sizes. Our findings
therefore reinforce the benefit of large sample sizes for BWAS. When large samples are not feasible (e.g. in
studies of rare diseases), extrapolation of our findings suggests framewise motion censoring is a prudent
strategy to avoid false positive inferences. Researchers should also exercise caution when interpreting trait-FC
correlations for biophysical traits (e.g. BMI) because their relationship to SNR makes them particularly
susceptible to spurious inflation by motion artifact.

Quantifying Motion Impact Helps To Avoid False Inference
Many Traits of interest to human population neuroscience are significantly correlated with head motion (87%).
Motion denoising algorithms successfully remove much of the effect of motion, but trait-specific motion effects
remain likely to distort inferences drawn from functional connectivity. The risk of false positives is highest for
biophysical traits (e.g., BMI) and false negatives are most likely for cognitive/behavioral traits (e.g. matrix
reasoning). Frame censoring is an effective strategy to reduce trait-specific motion distortions and can increase
the likelihood of finding a significant, reproducible effect. Spatial masks generated by our novel SHAMAN
method can be used to avoid the most motion-impacted regions during ROI selection. Given that residual head
motion is most likely to falsely suppress true associations between FC and cognitive traits, more aggressive
motion suppression and denoising techniques should lead to the discovery of new cognition-FC relationships.

Methods

Standard Methods
Behavioral
The Adolescent Brain Cognitive Development (ABCD) study participants are well-phenotyped with
demographic, physical, mental health 43, and cognitive 44 batteries. For the purpose of this report we selected
45 broadly-interesting traits for which complete data was available on a majority of participants: NIH Toolbox,
Wechsler Intelligence Scale for Children (WISC-V)46, Cognitive Behavioral Checklist (CBCL), Prodromal
Psychosis Scale (PPS), Behavioral Inhibition/Avoidance Scales (BIS/BAS), and Urgency Premeditation
Perseverance Sensation Impulsive Scale (UPPS-P), see Table 1. We also selected 5 physical (BMI, age, sex,
weight, and height) and 5 demographic (number of people living in household, combined parental income
bracket, parents’ marital status, highest parental education level, and residential deprivation index) traits
commonly used as covariates, as well as 2 study-related variables (number of MRI scans completed and
drowsiness), to see if any of these would be highly correlated with motion. Data were downloaded from the
NIMH Data Archive (ABCD Release 2.0), and the traits of interest were extracted using the ABCDE software
we have developed and which we have made available here: https://gitlab.com/DosenbachGreene/abcde.
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Exemplar Traits
Two exemplar traits were selected from the ABCD study a posteriori to illustrate the SHAMAN method. Body
mass index (BMI) is measured in units of kg/m2 with a normative range of about 14-22 for children ages 9-10
years 47. The Wechsler Intelligence Scale for Children, 5th edition (WISC-V) matrix reasoning subscore has a
mean of 10, standard deviation of 3, and maximum value of 19 46, with higher scores indicating superior
performance on the test.

MR Imaging
Functional magnetic resonance imaging (fMRI) was acquired at 21 sites using a protocol harmonized for 3
Tesla GE, Philips, and Siemens scanners with multi-channel receive coils 21. In addition to anatomical and
task-fMRI, each participant had up to four 5-minute-long resting-state scans (TR = 800 ms, 20 minutes total).
Participants with less than 8 minutes of resting-state data, the minimum duration needed for high-quality
estimation of connectivity 55, were excluded from analysis. A subset of sites using Siemens scanners used
FIRMM motion tracking software 5 that allows extending the scan on the basis of on-line measurement of
motion.

Following acquisition, fMRI data were processed using standardized methods including correction for field
distortion, frame-by-frame motion co-registration, alignment to standard stereo-tactic space, and extraction of
the cortical ribbon 38. Resting-state data were further processed to remove respiratory and motion artifact by
temporal bandpass filtering, global signal regression, and regression against the rigid-body motion parameters
using the ABCD-BIDS motion processing pipeline, a derivative of the Human Connectome Project (HCP)
processing pipeline 37 described by Fair et al 25,36. Processing dependencies include FSL 56 and FreeSurfer 57.

Parcellation
It is possible to compute functional connectivity between each voxel or vertex. However, this approach is
burdened by a high proportion of unstructured noise and large computer memory requirements. We therefore
adopted a ROI-based approach based on the 333 cortical parcels described by Gordon et al. 58 augmented by
the 61 subcortical parcels described by Seitzman et al 59 for a total of 394 parcels, or nodes.

Quantifying Motion
Motion in fMRI studies is typically estimated using spatial co-registration of each fMRI volume (or frame) to a
reference frame, or temporal analysis of variance 14. In this study we quantify motion using framewise
displacement, FD (L1-norm), in mm after filtering for respiratory artifact 32,33 because it is the default metric
used in the ABCD-BIDS processing pipeline 25,36.

Assessing the Performance of ABCD-BIDS
The primary aim of this study was to quantify trait-specific residual motion, but we also quantified trait-agnostic
residual motion for comparison to our trait-specific findings and to assess the overall performance of the
ABCD-BIDS motion processing tool (Figure S1). Multiple methods have been developed to quantify
trait-agnostic residual motion after the fMRI data have been denoised or “processsed.” 39 We employed a
straightforward approach of measuring the proportion of between-participant variation in fMRI signal variance
explained by motion. FD was averaged over each participant’s resting-state fMRI scans. The fMRI signal
variance within each parcel was computed for each participant before and after ABCD-BIDS (without frame
censoring). The fMRI signal variance was averaged across parcels to generate a single measure of fMRI
signal variance for each participant. Finally, the correlation (r) between FD and fMRI signal variance across
participants was computed before and after ABCD-BIDS. The relative reduction in the proportion of signal
variance related to motion achieved by ABCD-BIDS was computed as 1 - (rafter/rbefore)2.
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Correlation of Demographic & Behavioral Traits with Motion
We compare continuous traits of interest with motion (FD, in mm) using the linear product-moment correlation
coefficient, r. This quantity reflects the degree to which in-scanner head motion is related to a trait of interest
and is reported in Figure S2.

Frame Censoring
Frame censoring excludes spurious variance at the cost of data loss 60. Therefore, determining the optimal
frame censoring threshold is an empirical question. We considered the effect of no motion censoring (i.e. all
frames included in analysis), censoring at a stringent FD cutoff of 0.2 mm, and censoring at a very stringent FD
cutoff of 0.1 mm. Participants with less than 8 minutes of resting-state data were excluded from further analysis
at each censoring threshold, including the no motion censoring threshold. This resulted in a different number of
participants at each censoring threshold (Figure S3). The 8 minute cutoff was selected due the difficulty of
estimating stable values for functional connectivity with shorter scan duration 55.

Functional Connectivity
We begin with the standard approaches for computing and making inferences about functional connectivity,
which are familiar to all fMRI researchers. To avoid ambiguity, the methods are briefly summarized here, and
diagrammed in supplemental Figure S7 for reference. By convention, each brain region or parcel is referred to
as a “node” and the functional connections between nodes, which are referred to as “edges,” are computed as
the pairwise linear correlation coefficients between nodes. A vector of edges is typically visualized in an edge,
correlation, or “connectivity” matrix. As correlations are constrained to vary from -1 to 1, the correlation
coefficients are atanh (FIsher Z) transformed prior to regression. Inferences about trait-FC effects are made by
modeling the atanh-transformed edges as a linear combination of some participant-wise trait of interest (e.g.
matrix reasoning score) and some covariates (e.g. FD) using least-squares regression. The estimate of the
trait-FC effect at each edge is divided by the standard error of the estimate to obtain a t-value at each edge.

Methods for SHAMAN
Rationale
We begin by assuming traits and their effect on resting-state functional connectivity are stable over time
whereas states vary with time 61. Here a trait is a variable such as height, intelligence score, or favorite color,
which is stable over the timescale of an fMRI scan. Extrinsic variables like parental income are also considered
traits for this purpose. State is a variable such as instantaneous respiratory rate or head motion that varies
during an fMRI scan. Although it has been observed that the propensity to move is a trait which is stable over
months to years 52, here we consider second-to-second variations in the FD timeseries.

It follows from this assumption that if we split an individual participant’s fMRI BOLD timeseries in half, we will
draw the same individual- and group-level inferences on a trait from each half of the data (to within sampling
error). If trait-specific connectivity is not associated with head motion then split-half inference will be invariant to
the amount of motion in each half of the data. Thus, we can detect trait-specific motion-associated connectivity
by comparing inferences when the data is split according to the FD timeseries vs split at random.

Algorithm Steps
The SHAMAN (Split-Half Analysis of Motion-Associated Networks) algorithm is diagrammed in Figure 2. Its
steps are enumerated below.

1. An individual participant’s resting-state BOLD timeseries from one or more fMRI scans are
concatenated (Figure 2a).

2. The individual participant’s fMRI BOLD timeseries is split in half (Figure 2b). One half (left) contains the
half of the timeseries with the lowest FD (motion) values, and the other half (right) contains the half with
the highest FD values.
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3. A connectivity/edge matrix is computed separately for each half of the individual participant’s data
(Figure 2b). See Figure S8 for an illustration using real connectivity data.

4. Average (over time) FD is computed for each half of the data (Figure 2C).
5. Steps 1-4 are repeated for each participant in the study.
6. The between-participant effect of motion is accounted for by regressing (across participants) mean FD

out of each half of the connectivity data (Figure 2C).
7. The difference in residuals between low- and high-motion halves from Step 6 is computed for each

participant (Figure 2D).
8. The trait/variable of interest is regressed against the difference in residuals from Step 7 (Figure 2D),

optionally in the presence of covariates.
9. The resultant connectivity matrix is the motion impact for that trait (Figure 2E).

If motion processing works perfectly, or if participants do not move at all, then each half of the data will yield
identical connectivity matrices, and the difference in residuals in Step 7 above (Figure 2D) will be zero to within
sampling error. Subsequently, the result of regression in Steps 8 and 9 will also be zero (Figure 2E).

If spurious effects of motion remain in the data then the difference in residuals in Step 7 (Figure 2D) will not be
all zeros. If the trait/variable of interest is associated with head motion then the regression in Steps 8 and 9 will
reveal the trait-specific motion impact (Figure 2E).

Statistical Inference
The SHAMAN algorithm reveals the trait-specific impact of motion. This connectivity matrix will be zero under
the null hypothesis of zero motion impact. To detect significant motion impact, we test the omnibus alternative
hypothesis that one or more edges in this matrix is non-zero. To avoid making strong parametric assumptions
about the data, we use a permutation scheme followed by the non-parametric combining method described by
Winkler et al 40.

The permutation scheme is diagrammed in Figure S9. In Step 2 of the algorithm (Figure S9b) the data are split
in half at random, without respect to the FD timeseries. The rest of the algorithm proceeds as before. The
algorithm is repeated many times with different random splits (permutations) of the data to obtain a null
distribution for the motion-associated connectivity matrix (Figure S9e).

Once a null distribution is generated, we use non-parametric combining 40 to test the null hypothesis that all
edges in the motion-associated connectivity matrix are zero. Each edge is treated as a separate “modality” to
avoid assumptions about exchangeability or clustering of edges. We selected Stouffer's combining function 49,50

because Stouffer’s Z-score is well-known and has an intuitive interpretation. The non-parametric combining
process yields a single, omnibus Stouffer’s Z-score for the entire connectivity matrix, which we call the motion
impact score. Comparing the motion impact score to its null distribution yields an omnibus p-value that controls
for family-wise error rate across the entire motion-associated connectivity matrix. When the p-value is small a
significant amount of motion-associated connectivity is present. When the motion impact score (Stouffer’s
Z-score) is large, a large amount of motion associated connectivity is present.

The SHAMAN p-value Relates to Motion, Not Broader Significance
The p-value generated by the SHAMAN algorithm tests the omnibus null hypothesis that no edge (pairwise
connection) in a variable/trait’s connectivity matrix is significantly obscured by or inflated by head motion. It
does not test the hypothesis that the variable itself has a significant relationship with connectivity. On the
contrary, a small p-value from SHAMAN (or a correspondingly large motion score) indicates that variable’s
relationship with FC may be spuriously associated with head motion.
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False Positive vs False Negative Motion Impact Score
The main objective of SHAMAN is to detect how motion artifact impacts trait-FC correlations for specific traits.
When motion impact has the same sign as a the trait-FC correlation (both positive or both negative) then
motion inflates the size of the trait-FC correlation and would tend to cause false positive inference (concluding
the trait-FC correlation is significant it is not). When motion impact has the opposite sign of the trait-FC
correlation then motion diminishes the size of the trait-FC correlation and would tend to cause false negative
inference (failing to detect a significant trait-FC correlation when it really is significant). We can then compute
separate motion scores for motion associated connectivity predisposing to false positive or false negative
inferences by counting only those edges whose motion impact is the same (for false positive) or opposite (for
false negative) sign as the trait-FC correlation. Distinguishing between false positive and false negative error
requires us to know with some degree of certainty whether the trait-FC correlation is positive or negative. We
use a heuristic approach in which the trait-FC correlation at a given edge is positive if its t-value is > 2 and
negative if its t-value is < -2. If the t-value is near zero then we ignore the motion impact at that edge.

Node Analysis
We can quantify motion impact within individual nodes/parcels of the brain network. This may be advantageous
when planning a region of interest analysis or to help visualize motion-associated connectivity in anatomical
space. Instead of performing omnibus non-parametric combining over the entire connectivity matrix, we
perform non-parametric combining to obtain a Stouffer's Z-score and p-value over the edges connected to a
single node or subset of nodes.

The process for node analysis is best illustrated In Figure S4. First, an omnibus p-value is computed across all
edges. Then a Stouffer's Z-score (motion impact score) is computed for each individual node using the edges
connected to that node. The node with the largest motion score is excluded by deleting its connecting edges
from the connectivity matrix. The whole process is then repeated until all nodes have been excluded. The thick
red/black line in Figure S4 shows the omnibus p-value increasing (becoming less significant) from left to right
as each successive node is excluded. Portions of the line below p = 0.05 are highlighted in red. The point at
which the line intersects with p = 0.05 corresponds to the number of nodes affected by motion-associated
connectivity.

Node analysis is also used to visualize motion-associated connectivity anatomically in Figure 4c,d. The
Stouffer’s Z-score, or “motion Z-score,” is computed for each individual node as above. The resultant motion
scores are visualized on the cortical surface.
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Supplemental Tables

Table S1: Relationship between selected variables in the ABCD study with head motion (framewise
displacement, FD) averaged over each participant’s resting state fMRI scans. The SHAMAN (omnibus)
p-values and motion scores (omnibus Stouffer’s Z-scores) are also given for false positive/Type I Error, false
negative/Type II Error, and both/either error type. Results in this table reflect data after motion-reduction with
ABCD-BIDS and without additional motion censoring. Variables are sorted by Type I motion score. See Figure
S2.
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Table S2: Summary of motion-associated connectivity for selected variables in the ABCD study after
motion-reduction with ABCD-BIDS and with (varying from left to right) no motion censoring, censoring at
framewise displacement (FD) < 0.2 mm, and FD < 0.1. Variables are sorted by (omnibus) p-value without
motion censoring. P-values corresponding to false positive/Type I Error and false negative/Type II Error are
shown separately. See also Table S3.
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Table S3: Summary of motion-associated connectivity for selected variables in the ABCD study after
motion-reduction with ABCD-BIDS and with (varying from left to right) no motion censoring, censoring at
framewise displacement (FD) < 0.2 mm, and FD < 0.1. Variables are sorted by motion score (omnibus
Stouffer’s Z-score) without censoring. Motion scores for false positive/Type I Error and false negative/Type II
Error are shown separately. See also Table S2.
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Table S4: Sampling bias at different levels of motion censoring. The percentage difference in sample mean
(compared to no censoring) is shown for selected variables in ABCD after moderate censoring at a framewise
displacement (FD) of 0.2 mm or stringent censoring at FD < 0.1. Variables are sorted by absolute percentage
difference at FD < 0.1 mm. Two variables (gender and number of MRI runs completed) are biased by more
than 1% at FD < 0.2 mm, and 11 variables are biased by > 1% at FD < 0.1 mm.
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Supplemental Figures

Figure S1: Proportion of fMRI BOLD signal variance explained by head motion before and after processing
with the ABCD-BIDS (DCAN Labs) motion reduction algorithm. The comparison is made prior to any framewise
motion censoring. (a) Scatterplot of variance (Z-score) of the mean node timeseries vs. mean framewise
displacement (FD, in mm) for each child (n = 9,652). (b) Proportion of variance of mean node (parcel)
timeseries explained by motion visualized on the cortical surface before and (c) after ABCD-BIDS.
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Figure S2: Correlation between trait variables and in-scanner head motion. (a) Body mass index (BMI,
kg/m2, mean 16.8, standard deviation 3.1), r = 0.09. (b) Wechsler Intelligence Scale for Children 5th Edition
(WISC-V)46 matrix reasoning score (mean 10, standard deviation 3, maximum 19), r = -0.12. Both correlations
were significant at p < 0.001. Each point represents one participant in the ABCD study. Head motion was
measured as framewise displacement (FD, in mm) averaged over resting-state scans. The best fit is shown as
a dashed line.
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Figure S3: Sampling bias at different levels of framewise censoring. Sample distributons are shown for (a)
body mass index (BMI), (b) WISC-V matrix reasoning score, and (c) sex assigned at birth. Mean (solid line)
and standard deviation (SD) for (a) BMI and (b) matrix reasoning were similar across all levels of motion
censoring, but the proportion of boys to girls shifted significantly from 52.6% without motion censoring to 51.6%
with very stringent censoring at framewise displacement (FD) < 0.1 mm.
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Figure S4: Number of nodes contributing to significance of motion impact. Top: Nodes driving false
positive motion impact for (a) body mass index (BMI) and (b) WISC-V matrix reasoning score. Bottom: Nodes
driving false motion impact for (c) BMI and (d) matrix reasoning. Reading each plot from left to right, the node
with the highest motion score (lowest omnibus p-value) was iteratively excluded, and the omnibus p-value for
edges across all remaining nodes is plotted as a solid line. The line is red for p < 0.05 (significant motion
associated connectivity) and black for p > 0.05 (not significant). The omnibus p-value for each single node
excluded is shown in the background.
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Figure S5: Correlation between SHAMAN motion impact score and in-scanner head motion. (a) False
positive and (b) false negative motion impact scores (omnibus Stouffer’s Z-score) for selected variables from
the ABCD study are plotted vs the correlation (absolute value) of those variables with average participant head
motion (framewise displacement, FD). Results reflect fMRI data after motion-reduction with ABCD-BIDS and
without additional motion censoring. See Table S1.
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Figure S6: Statistical Power of SHAMAN Method. (a) True positive detection rate of SHAMAN computed
using bootstrapped subsamples of different sizes (numbers of participants) with body mass index as an
exemplar variable for significant motion associated connectivity predisposing to false positive inference (Type I
Error) and WISC-V matrix reasoning score as an exemplar for false negative inference (Type II Error). (b)
False positive detection rate of SHAMAN for either Type I or II Error using a random variable generated from
the unique participant identifier.
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Figure S7: Conventional regression model for resting-state functional connectivity.
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Figure S8: Mean (average) connectivity matrix computed from the low-motion (a) and high-motion (b) halves
of each participant’s resting-state fMRI data. The difference (rescaled to show visual detail) is shown in (c).
Figures are generated from data after denoising with ABCD-BIDS but without motion censoring.
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Figure S9: Null model permutation scheme for SHAMAN algorithm depicted in Figure 8. In (B) the data is split
in half at random, without respect to the FD timeseries. The rest of the algorithm proceeds as before. The
algorithm is repeated many times for each random split (permutation) to generate a null distribution for the
motion-associated connectivity matrix in (E).
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Simulation Supplement
Generative Model
In order to test the validity of the SHAMAN algorithm we devised a generative model for fMRI BOLD timeseries
data for which the parameters of brain signal and motion can be experimentally controlled. Such a model
necessarily requires simplifying assumptions since the true biophysical properties of the brain are not known.
Several fMRI data simulators exist 62, but none allows for realistic simulation of head motion artifact. Therefore,
for our simulator we worked backwards from the assumptions of the conventional, massively univariate,
resting-state functional connectivity regression model (Figure S4) in which between-participant variables of
interest are predictors (the design matrix) and atanh (Fisher Z) transformed linear correlation coefficients
between brain regions are the observed data.

We generated two basis correlation matrices with the same dimensions (394 x 394 nodes) as the
Gordon-Laumann-Seitzman 58,59 brain parcellation. Figure SA.1a shows the basis correlation matrix for the
simulated “brain” signal and Figure SA.1b shows the matrix for simulated head motion. The Cholesky
decomposition of each basis correlation matrix was used to simulate the timeseries of brain and motion
signals.

Figure SA.1: Basis correlation matrices. (a) “Brain” signal. (b) “Motion” artifact. The dimensions of each matrix
are 394 x 394 nodes. The portions of the matrices outlined in the red dashed boxes were algorithmically added
to make each matrix positive semi-definite.

The process for generating simulated data is diagrammed in Figure SA.2. Normally-distributed random data
were multiplied by the Cholesky decomposition of the respective basis correlation matrix to generate simulated
“brain” and “motion” timeseries for each simulated participant. We simulated 394 nodes x 1,024 fMRI frames
(time points) for 1,024 simulated participants.

The variance, across the 394 nodes, at each of 1,024 time points in the motion timeseries was used as the FD
timeseries for each participant.

The brain and motion timeseries were mixed together in controlled proportions. Working backwards, the 1,024
participant x 1 predictor “brain” column of the across-participants design matrix (i.e. the trait variable) was
drawn at random from the standard normal distribution and then shifted to obtain all positive numbers. The
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1,024 x 1 “motion” column of the design matrix was taken as the mean FD timeseries of each participant. The
brain and motion timeseries for each participant were then mixed by addition in the time domain according to
their proportions (brain, motion) of variance in the design matrix. For example, if a participant’s row in the
design matrix were (1.6329, 0.2216) then the mixed timeseries was generated by mixed = sqrt(1.6329) * brain
+ sqrt(0.2216) * motion. An additional step (detailed below) was used to correct the variance of the mixed
timeseries to satisfy the assumptions of linear regression on correlation matrices.

Finally, the 394 x 394 correlation matrices for each participant were computed from their mixed timeseries.
Correlation coefficients were transformed from the domain of (-1, 1) to connectivity over (-∞, ∞) using the atanh
(Fisher’s Z) transform. The design matrix and connectivity matrices were used as inputs for the conventional
resting-state connectivity regression model in Figure S4.
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Figure SA.2: Method for generating simulated fMRI timeseries and connectivity matrices. 394 x 394 basis
correlation matrices for “brain” and “motion” were Cholesky-decomposed to generate random 394 x 1,024
timeseries for each of 1,024 participants. The simulated FD (framewise displacement) timeseries was
computed from the across-node variance of the motion timeseries at each point in time. The brain predictor
variable was generated randomly. Brain and motion timeseries were mixed according to their proportions in the
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design matrix as diagrammed in Figure SA.4. Finally, each participant’s connectivity matrix was generated as
the atanh (Fizher Z transform) of the correlation matrix of the mixed timeseries.

Simulation Results
Simulation results are summarized in Figure SA.3. First, as a negative control, we simulated FD timeseries but
did not add any motion into the simulated fMRI data. This simulation depicts a scenario in which head motion
occurred during scanning, but motion denoising algorithms were able to perfectly remove it from the data. No
motion was seen in the mean connectivity matrix nor the brain-specific connectivity matrix from regression, nor
did SHAMAN detect any trait-specific motion impact (results not shown).

As a second negative control, we simulated cases where motion was mixed into the data in equal proportion to
brain signal, and across-participant motion was linearly separable from brain signal. This linear separability
occurred for simulations where the proportions of brain and motion signal across participants were
uncorrelated (i.e. trait/variable is not correlated with motion at all), and also for simulations where the
proportions of brain and motion signal in the design matrix were linearly related to the true proportions of brain
and motion signal mixed into the data (i.e. FD is a highly-accurate linear function of motion-induced fMRI
signal). For these simulations we did observe motion in the mean connectivity matrix (Figure SA.4a) but there
was no motion in the trait-specific connectivity matrix (Figure SA.4c). SHAMAN correctly did not detect any
motion impact (Figure SA.4e).

As a positive control, we simulated cases where motion was mixed into the data in equal proportion to brain
signal, but the FD timeseries was not a linear function of the proportion of mixed motion signal. In Figure SA.4,
second column, we achieved this by drawing the motion-signal timeseries, x, from a random normal distribution
correlated with the simulated brain signal r = 0.5. We used x to compute FD, but then transformed the
motion-signal timeseries by f(x) = 1 + x2 before mixing (i.e. FD is related to motion but not a pure linear function
of it). As expected, we observed motion in the mean connectivity matrix (Figure SA.4b). We also observed
residual motion artifact in the brain/trait-specific connectivity matrix from regression (Figure SA.4d), even when
modeling mean FD as a covariate in regression. SHAMAN correctly detected the presence of this trait-specific
motion impact (Figure SA.4f).
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Figure SA.3: Simulation results when motion is linearly separable (left) and when motion is not linearly
separable (right). In both cases (a, b) motion is present in the mean connectivity matrix. The linear regression
model for “brain” with motion (participants’ mean FD) as a covariate successfully removes the motion in (c) but
not in (d). SHAMAN does not detect motion-associated connectivity in (e) but correctly detects the artifact in (f)
(p < 0.001).

Variance Correction
Proper timeseries mixing requires an additional step of variance correction to account for assumptions in the
conventional model for resting-state fMRI regression. This model, diagrammed in Figure S4, assumes that
connectivity matrices (derived from correlation matrices) are linearly superimposable for the purposes of linear
regression. Correlation is computed by taking the covariance of two timeseries and dividing by the product of
the standard deviations of the timeseries. Thus, regardless of the total amount of variation in each timeseries,
the correlation is constrained to vary between -1 and 1. Therefore, in order to make correlation matrices (or
their atanh-transformed connectivity matrices) linearly superimposable, we simulated data with the same total
variance across participants.

Furthermore, we assume that (after any time-series/autoregressive filtering during pre-processing) computing
correlation does not depend on the temporal ordering of the fMRI timeseries. This assumption allows us to
“censor” high-motion frames from a timeseries, or to concatenate timeseries from different scans together.
Therefore, in addition to generating data with the same total variance across participants, we simulated data
with the same total variance across time.

The process for mixing the simulated timeseries to satisfy these assumptions is diagrammed in Figure SA.4.
First the brain and motion timeseries were added together to generate a provisionally-mixed timeseries. Then
the target variance to use across all participants was computed by summing the columns of the target design
matrix and finding the row with the maximum value corresponding to the participant with the highest, or
“maximum” variance. A random variance-correction timeseries was generated for each participant such that,
when added to the provisionally-mixed timeseries, the resultant variance-corrected timeseries had constant
across-node variance over time equal to the maximum variance.

Finally, an equal amount of normally-distributed noise was added to the variance-corrected timeseries for each
participant to obtain the final, properly-mixed timeseries used to compute each participant’s correlation and
connectivity matrices. This additional noise models unstructured noise from the fMRI scan (e.g. thermal noise),
and also allows for the across-node variance of the mixed timeseries to vary with time while still satisfying the
assumptions of the linear model.
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Figure SA.4: Method for proper timeseries mixing of brain and motion signals in controlled proportions. A
provisional mixing of the brain and motion timeseries is obtained by addition in the time domain. A random
variance-correction timeseries is then added such that, at each time point, the across-node variance of the
variance-corrected timeseries is equal to the maximum variance of any participant. Finally, an equal amount of
normally distributed noise is added to the variance-corrected timeseries to simulate thermal noise and to allow
for the across-node variance of the final, properly-mixed timeseries to vary with time. The mixed timeseries are
used to generate connectivity matrices for each participant as in Figure SA.2.
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