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45 Abstract

46 Functional MRI (fMRI) data are severely distorted by magnetic field (BO) inho-
a7 mogeneities which currently must be corrected using separately acquired field
48 map data. However, changes in the head position of a scanning participant across
49 fMRI frames can cause changes in the B0 field, preventing accurate correction
50 of geometric distortions. Additionally, field maps can be corrupted by move-
51 ment during their acquisition, preventing distortion correction altogether. In this
52 study, we use phase information from multi-echo (ME) fMRI data to dynamically
53 sample distortion due to fluctuating BO field inhomogeneity across frames by
54 acquiring multiple echoes during a single EPI readout. Our distortion correction
55 approach, MEDIC (Multi-Echo DIstortion Correction), accurately estimates BO
56 related distortions for each frame of multi-echo fMRI data. Here, we demonstrate
57 that MEDIC’s framewise distortion correction produces improved alignment to
58 anatomy and decreases the impact of head motion on resting-state functional
50 connectivity (RSFC) maps, in higher motion data, when compared to the prior
60 gold standard approach (i.e., TOPUP). Enhanced framewise distortion correc-
61 tion with MEDIC, without the requirement for field map collection, furthers the
62 advantage of multi-echo over single-echo fMRI.

63 Keywords: Distortion Correction, fMRI, Multi-Echo
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1 Introduction o

Functional MRI (fMRI) data acquired using echo planar imaging (EPI) sequences are &
prone to local image distortions due to magnetic field inhomogeneities (B0) arising
from differences in magnetic susceptibility, particularly across air-tissue interfaces [1]. &
The orbitofrontal and inferior temporal cortices suffer the largest distortion due to s
their proximity to the sinuses, mastoids, and ear canals [2], but distortion is present to e
varying degrees across the brain. The presence of local image distortion is particularly 7«
problematic for functional connectivity (FC) and task fMRI analyses, which rely on =
accurate co-registration of functional and anatomical data. Image distortion degrades 7
the performance of registration algorithms used to align functional data to anatomical
data and prevents accurate spatial localization of anatomical features in fMRI studies 7
(3, 4]. 75

To correct geometric distortions in fMRI data, dedicated field map scans are 7
acquired before fMRI acquisitions to estimate the B0 field inhomogeneity [5, 6]. How- =
ever, such static distortion correction approaches are vulnerable to head motion [7]
and represent only a snapshot of the field inhomogeneities. Head movement during 7
fMRI is notorious for introducing significant noise and systematic artifacts into the s
data [8]. In the context of susceptibility artifact correction, head position and motion &
will compromise the accuracy of the field map data, rendering distortion corrections s
inaccurate. Distortion corrections estimated from separately-collected field maps are s
accurate only so long as the participant’s head remains in the same position they were s
in when the field map was collected. This is because rotations about axes orthogo- s
nal to the main magnetic field (i.e., through-plane rotations, when slices are defined s
axially) change the susceptibility induced inhomogeneities in the BO magnetic field &
[9] and thus the degree of distortion in the fMRI data. Thus, a distortion correc-
tion method that is robust to head motion and position would greatly benefit fMRI, &

particularly where motion may be related to phenomena of interest [10]. %
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o1 Multi-echo fMRI (ME-fMRI) has been shown to have several advantages for BOLD
« signal detection relative to single-echo sequences [11]. By combining data across
o3 echoes, ME-fMRI increases BOLD signal sensitivity, particularly to regions that have
o significant signal dropout at typical single-echo times [12]. Further, multiple echo times
os allows modeling and separation of neurobiologically relevant fMRI signals from phys-
o iological and physics-related artifacts [13, 14]. These features of ME-fMRI have been
oz shown to improve reliability of RSFC estimation, especially in clinically relevant sub-
s cortical brain regions like the subgenual cingulate, basal ganglia, and cerebellum [15].
o The improved reliability is attributed to greater signal-to-noise ratio (SNR), enabling
w0 more rapid and precise mapping of the brain.

101 fMRI data are complex signals composed of magnitude and phase components,
102 where magnitude images at each TR are typically used to evaluate temporal changes
13 in BOLD contrast via T2*. However, ME-fMRI phase data from each TR provides
s spatial and temporal information about magnetic field variations. By measuring the
105 difference in phase between echoes in ME-fMRI data, the BO field inhomogeneity can
s be estimated as the slope of the linear relationship between phase and echo time [5].
w7 Since phase information can be acquired at every TR, a frame-by-frame measure of
108 the B0 field inhomogeneity can be estimated, allowing for more accurate, motion-
w0 robust, framewise correction of susceptibility distortion in ME-fMRI data. Frame-wise
1m0 distortion correction in ME-fMRI also eliminates the need for separate field map
m  acquisitions, which are required for static distortion correction

112 Capitalizing on the recent surge in ME-fMRI usage, we built an easy-to-use,
u3  precise method for dynamic, frame-wise distortion correction. Here we describe our
us  open-source, high-speed Multi-Echo DIstortion Correction (MEDIC) algorithm for
us correcting susceptibility distortions in fMRI data. Comparisons of MEDIC against a
ue current gold standard method, which uses a single static B0 estimation and correction

ur (TOPUP) [6], demonstrate its superiority, especially in the presence of head motion.
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2 Results s
2.1 MEDIC captures magnetic field changes due to head 119
motion 120

Changes in the B0 magnetic field due to head motion are primarily attributable to the 1z
shifting position of susceptibility sources relative to the main magnetic field. Unlike 12
traditional static field map methods, MEDIC field maps capture these dynamic alter- 12
ations in a framewise manner. To demonstrate the efficacy of MEDIC in capturing i
magnetic field changes due to motion, we collected data while a participant rotated s
their head about each of the cardinal axes, in addition to acquiring data in a neutral 1
head position. Dynamic field maps were then extracted from the phase information 1
of the resulting scans using MEDIC. The difference between field maps acquired in  12s
the neutral and rotated head positions was subsequently calculated (Neutral - Rota- 12
tion). Average and standard deviation motion parameters for each head position are 1w

documented in Supplemental Table 1. 131
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Fig. 1 Changes in main magnetic field (B0) inhomogeneity due to head rotation. To assess the
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effects of head motion on the BO magnetic field, the participant rotated their head about each of the
three cardinal axes: rotations about the (z) slice axis (i.e. yaw), rotations about the (x) readout axis
(i.e. pitch), and rotations about the (y) phase encoding axis (i.e. roll). Each rotated head position was
held for 100 frames (~3 minutes). (a) Selected images from the fMRI time series as the participant
rotates their head about each axis (700 frames: ~20 minutes). (b) Field maps for each rotated head
position were computed using MEDIC and compared to the MEDIC field map computed in the
neutral (i.e. no rotation) head position. The average magnitude of rotation about each major axis is
listed for each column and corresponds to each rotated head position in (a). Warmer colors indicate
an increase in the BO inhomogeneity and a voxel shift that is more posterior than the neutral position,

while cooler colors indicate the opposite.

132 As the participant rotated their head relative to the neutral resting head position,
133 we observed changes in the B0 field estimated from the framewise field maps (Figure 1
3 and Supplementary Videos 1-6). To measure the change in BO inhomogeneity due to

135 head motion, the field maps for each head rotation were rigid-body realigned to the
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neutral head position and the difference was computed (Neutral - Rotation). Exemplar 13
frames of the acquired data show the participant rotating their head along each of 1
the cardinal axes in the scanner throughout the time series (Figure 1la). We found 1
that rotations about the slice direction (Z-axis) led to small changes in the field map 1
(Figure 1b). In contrast, rotations about the readout (X-axis) and phase encoding (Y- 10
axis) directions caused significant changes in the field map (Figure 1b), suggesting that 1a
MEDIC-derived field maps are sensitive to changes in the B0 field due to motion. For 1
the particular ME-fMRI sequence used, for every change of 10 Hz in the BO field, each 13
voxel is displaced by ~0.6 mm. For rotations about the slice direction, we observed 1
similar, but small, spatial patterns in the field map difference as in rotations about the s
phase encoding direction. We largely attribute these similarities to the small Y-axis s

rotations present in the Z-axis rotation data (Supplemental Table 1). 147

2.2 MEDIC dynamic distortion correction reduces the impact s

of head motion on functional connectivity estimates 149

To assess the effects of these changes on resting-state functional connectivity (RSFC) 10
analyses, as well as the ability for MEDIC to mitigate these BO field change effects, 1
we compared the functional connectivity maps of data derived from this head motion 1
study to a low motion dataset from the same participant. These data were prepro- 1s3
cessed (see Methods) and distortion corrected separately using both MEDIC and FSL 15
TOPUP, the current gold standard in distortion correction. A separately acquired field 155
map scan in the neutral head position (Frame 50, Figure 1a) was used for TOPUP 15
distortion correction, reflecting a typical data acquisition experiment of a single field 17
map acquisition at the beginning of a functional scan (See Supplemental Fig. 1). Both 1
MEDIC and TOPUP preprocessed data were projected to the surface. Functional 1s
connectivity maps were computed from seeds in the dorso-lateral prefrontal cortex 10

(DLPFC), the extrastriate visual cortex, and the somato-cognitive action network e
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12 (SCAN) region of primary motor cortex [16]. To assess the effectiveness of distortion
163 correction, the quality of these maps were evaluated by comparing them to a large,

16a  low-motion dataset from the same participant, processed with TOPUP.

a Functional connectivity (FC) seed maps: Dorsolateral prefrontal cortex (DLPFC)

Standard: Low motion (TOPUP: static) MEDIC: Dynamic distortion correction TOPUP: Static distortion correction
Exemplar participant Exemplar participant Exemplar participant

Correlation to standard: r = 0.41

b Functional connectivity (FC) seed maps: Occipital cortex (extrastriate visual)

Standard MEDIC

Correlation to standard: r = 0.53

c Functional connectivity (FC) seed maps: Somato-cognitive action network (SCAN)

Standard MEDIC TOPUP

Correlation to standard: r = 0.23 Correlation to standard: r = 0.18

-0.6 -03 0.0 03 0.6

Functional Connectivity z(r)

Fig. 2 Comparison of dynamic (MEDIC) and static (TOPUP) distortion correction in high motion
data. To compare the effects of each distortion correction method (MEDIC vs. TOPUP) on high
motion data (700 frames: ~20 minutes), the data were otherwise processed identically. On the left most
column, a low motion dataset (5100 frames: ~150 minutes) of the same participant processed using
TOPUP was used as a reference for comparison. Middle and right columns show the resulting resting-
state functional connectivity maps for high motion data processed with each distortion correction
method (see Supplemental Fig. 1 for the TOPUP field map used) and Fisher-z transformed. Seeds
in (a) DLPFC, (b) occipital cortex, and (c) somato-cognitive action network (SCAN), were placed
to review the effectiveness of correction and are marked by a black dot. Correlations between the
standard (low motion data) and MEDIC/TOPUP (high motion data) in each seed are displayed
under each seed map. Seed maps are thresholded to only display connectivity values above [r| > 0.25

for easier visualization.
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The exemplar seed maps show that high motion MEDIC corrected data were more 15
similar to the low motion data than TOPUP corrected high motion data, despite the 166
low motion (gold standard) data being processed with TOPUP (Figure 2). Greater s
improvement in similarity to the low motion data was observed in DLPFC and occip- s
ital cortex (Figure 2a,b) compared to SCAN (Figure 2c). We observed that the mean 15
correlation between high-motion MEDIC-corrected seed maps and low-motion seed 170
maps was R = 0.35 (SD: 0.16). In contrast, the mean correlation between high-motion 1n
TOPUP-corrected seed maps and low-motion data was R = 0.32 (SD: 0.15). Using a 1
two-tailed paired t-test, we found this difference to be statistically significant (two- 13
tailed paired t = 64.13; p < 0.001; df = 59411), indicating that MEDIC corrected 17
data is more similar to low motion corrected data and has greater robustness to head s

motion. 176

2.3 MEDIC dynamic distortion correction improves functional .~

connectivity in pediatric populations 178

Uncorrected geometric distortion introduces participant-to-participant variability in 1
RSFC structure. We reasoned that improved distortion correction would produce indi- 15
vidual RSFC estimates that align more closely with a group average. To accomplish 1
this, we compared MEDIC and TOPUP distortion-corrected FC maps to gold- 1
standard group-averaged data, processed with TOPUP (ABCD Study; N = 3,928) [17]. 18
We used our Adolescent dataset containing repeated-sampling precision ME-fMRI 15
data from 21 participants (9-12 years old, 8M, 13F), with a total of 185 runs. These 1
ME-fMRI data were preprocessed with both MEDIC and TOPUP for resting-state 1ss

functional connectivity analyses. 187
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a Functional Connectivity (FC) seed maps: Occipital Cortex

Group-averaged standard (TOPUP: static) MEDIC: Dynamic distortion correction TOPUP: Static distortion correction

’ %
ABCD (N = 3,928) z;

)
-0.50 -0.25 0.00 0.25 050 Correlation to standard: r = 0.44 Correlation to standard: r = 0.04

Functional Connectivity z(r)

b Whole-brain FC similarity to group-averaged standard ¢ Whole-brain FC similarity to group-averaged standard
MEDIC > TOPUP

MEDIC more similar to Group Average ’ ¢

Scan ’

N =185 Scans

Correlation (r)
.
t-statistic
S

,I Scan
,*° TOPUP more similar o Group Average

-6

-
0.30 Correlation (r) 0.55 TOPUP > MEDIC

Fig. 3 Comparison of dynamic (MEDIC) and static (TOPUP) distortion correction against large-
sample group-averaged data. (a) Resting-state functional connectivity maps from a single scan (~16
minutes) in the Adolescent dataset (N = 185). A seed placed in the occipital cortex (primary visual)
is indicated by a black dot. Seed maps are displayed for data corrected using MEDIC (middle) and
TOPUP (right) and compared to a functional connectivity map computed from the ABCD group (N
= 3,928) average (left). Seed maps are thresholded to only display connectivity values above |r| > 0.3
for easier visualization. (b) Mean correlation of each scan from the Adolescent dataset to the ABCD
group average. Each dot represents the mean similarity of a single scan (~10-16 min) of the Adolescent
dataset to the ABCD group average. The y-axis represents the similarity to the ABCD group average
using MEDIC correction while the x-axis represents the similarity for the TOPUP corrected version
of the same data. The unity line represents the case where the MEDIC and TOPUP corrections
achieved the same similarity to the group-averaged standard. Points that are orange and above the
unity line indicate MEDIC corrected data that were on average more similar to the ABCD group
average than TOPUP corrected data. Blue dots that are below the unity line indicate the opposite.
(c) T-statistic map representing the spatial distribution of similarity to the ABCD group average.
Each vertex on the surface represents a t-statistic value, estimated using a two-tailed paired t-test
across all 185 scans of the Adolescent dataset between MEDIC and TOPUP correction. Warmer (red)
colors indicated that MEDIC correction had higher similarity to the ABCD group average compared

to TOPUP for that vertex, while cooler (blue) colors indicate the opposite.
10
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Seeds maps from both MEDIC and TOPUP processed data were compared to 1ss
the ABCD group-averaged data (Figure 3a; left). In the occipital cortex, the TOPUP s
corrected data showed correlations not observed in the ABCD group (Figure 3a, right: 100
seed correlation to group-averaged data r = 0.04) that were removed by reprocessing a1
the identical data with MEDIC (Figure 3a, middle: seed correlation to group-averaged —1e
data r = 0.44) (Squared Error: MEDIC = 0.03 (SD: 0.07), TOPUP = 0.07 (SD: 0.10); 10
two-tailed paired t = -84.6; p < 0.001; df = 59411). 104

To quantify the benefits of dynamic distortion correction with MEDIC across 1o
the entire Adolescent dataset, cortical seed maps at every vertex for each scan were 1
compared to the corresponding group-averaged standard map (ABCD) through spa- 1
tial correlations. These spatial correlations were then averaged across all vertices 1
(Figure 3b; y-axis). The same assessment was done with TOPUP (Figure 3b; x-axis). 1
MEDIC corrected data were overall more similar to the ABCD group average com- 200
pared to TOPUP corrected data (MEDIC: 147; TOPUP: 38; two-tailed paired t = 2
9.37; p < 0.001; df = 184). 202

Finally, we sought to understand the regions in which MEDIC improved distor- 203
tion correction. We examined the spatial pattern of distortion correction differences 20
by doing a vertex-wise paired t-test to generate a vertex-wise t-statistic whole-brain s
map showing those regions where MEDIC was more similar to the group-averaged 20
data (Figure 3c; hot colors). A clustering based multiple comparisons correction was 207
applied to correct to a significance level of 0.05 (uncorrected p-value 0.01) and leaving 20
only statistically significant clusters. This whole-brain map of similarity to the group 20
average revealed that the benefits of using MEDIC dynamic distortion correction were 210

greatest in the medial prefrontal and occipital cortex (Figure 3c). 211

11


https://doi.org/10.1101/2023.11.28.568744
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.28.568744; this version posted November 29, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

2 2.4 MEDIC frame-wise distortion correction produces

13 superior anatomical alignment

24 One goal of distortion correction is to improve co-registration of the fMRI to the
25 anatomical data. Therefore, we assessed alignment accuracy by using the gray and
zs  white matter surfaces generated from anatomical segmentations [18]. When distortion
a7 correction is optimal, the gray and white matter surfaces obtained from anatomical
28 data should also delineate the gray and white matter voxels in functional data on
219 both the cortical and cerebellar surfaces. For this assessment, data from three separate
20 SIEMENS Prisma MRI scanners at three different institutions: Washington University
o1 in St. Louis (WashU, selected participant from the Adolescent dataset), University
22 of Minnesota (UMinn), and University of Pennsylvania (Penn) were processed and
23 distortion corrected using MEDIC and TOPUP. We used participants from three
24 different scanning sites to eliminate scanner-specific effects in the comparison between
2»s  MEDIC and TOPUP anatomical alignment. Gray and white matter surfaces produced
»s by anatomical segmentations from Freesurfer 7.3.2 [19] were overlaid on the averaged,

27 atlas-aligned, distortion corrected functional volumes.

12
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a WashU Data b UMinn Data ¢ Penn Data

Field Map Difference (MEDIC - TOPUP)

Field map Difference (Hz)
0o

0
Displacement difference (mm)

MEDIC

TOPUP

Fig. 4 Comparisons of anatomical surface alignment after dynamic (MEDIC) and static (TOPUP)
distortion correction. Gray and white matter boundaries (blue and green outlines respectively for
cortex; fuchsia and teal outlines respectively for cerebellum) were derived from freesurfer anatomical
segmentations. Good alignment occurs when segmentation surfaces correctly delineate gray and white
matter boundaries of the underlying functional data. Each column shows ME-fMRI data obtained
from three different scanning sites: (a) WashU (selected participant from Adolescent dataset), (b)
UMinn and (c) Penn. The top row shows the difference in field maps between MEDIC and TOPUP
(MEDIC - TOPUP). The colorbar denotes the magnitude of these differences, where warmer colors
indicate TOPUP field maps had a lower BO frequency and have a displacement that is more anterior
compared to MEDIC for a particular voxel. The middle and bottom rows show anatomical surface
overlays on the averaged, atlas-aligned ME-fMRI data. Red arrows indicate areas that MEDIC cor-

rected data was more saliently aligned to the anatomical data compared to TOPUP corrected data.

13
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28 Field map differences between MEDIC and TOPUP were found to occur along the
20 slice-encoding direction for all participants (Figure 4). In regions with large MEDIC-
20 TOPUP distortion differences (Figure 4; top row), we hypothesized that we would
2 also exhibit observable differences in registration to anatomy. This appeared to be the
22 case; and further, in all of these regions, the MEDIC image was better aligned to the
213 anatomy than the TOPUP image.

234 In the WashU dataset (Figure 4a), the most prominent difference was observed
235 in the cerebellum. In the TOPUP corrected data the inferior cerebellum was shifted
26 approximately 3 mm anteriorly compared to the anatomical segmentation reference.
2» - MEDIC corrected data closely aligned with the cerebellar anatomy, suggesting a higher
2 efficacy for cerebellar alignment. For the UMinn dataset (Figure 4b), we identified
239 discrepancies in the dorsal cerebral cortex. The sulci in the TOPUP corrected images
20 were shifted 2-3 mm anteriorly relative to the anatomical reference. In contrast, the
. MEDIC corrected data showed a good agreement with the cortical anatomy. Finally,
22 in the Penn dataset (Figure 4c), a distortion profile similar to that of the UMinn
23 data was observed. Specifically, the greatest differences appeared in the dorsal cortical
24 region. The TOPUP corrected data displayed a 1-2 mm anterior shift in cortical
us  structures relative to the anatomical reference. Meanwhile, the MEDIC corrected data

26 maintained good alignment with the cortical anatomy.

« 2.5 MEDIC distortion correction is superior on local and

218 global anatomical alignment metrics

a9 To quantify anatomical alignment performance for MEDIC and TOPUP, we com-
0 puted established local and global alignment metrics [18] between distortion corrected

51 functional data and their corresponding T1w and T2w anatomical data (full statisti-

22 cal tables for each alignment metric are given in Supplemental Table 2). We computed

14
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all alignment metrics for the Adolescent dataset across 185 scans from 21 participants

in both MEDIC and TOPUP corrected data.

a Tlw alignment: Spotlight analysis

MEDIC > TOPUP
10.0y
75
5.0

25

b T2w alignment: Spotlight analysis

0.0

t-statistic

-2.5

TOPUP > MEDIC .

-10.0

Fig. 5 Spotlight assessment of local similarity between distortion corrected functional and T1w/T2w
anatomical data. T-statistic maps from local R? values were computed using a 3 voxel radius “spot-
light” moving across the entire image. (a) shows the t-statistic between MEDIC and TOPUP for
each R? spotlight between the functional image and the T1w anatomical image, while (b) shows the
t-statistic between MEDIC and TOPUP for each R? spotlight between the functional image and the
T2w anatomical image. Warmer colors indicate MEDIC corrected data had higher local similarity to

anatomy compared to TOPUP corrected data.

To assess local image correspondence, we computed the squared correlation (R?)
within a “spotlight”, a 3 voxel radius sphere window, between each of T1w and T2w
anatomical and the reference functional image. Two tailed paired t-tests were com-
puted for each voxel across all functional data scans in the Adolescent dataset (N
= 185) to determine which distortion correction strategy was more similar to the
anatomy at a local spotlight. Clustering based multiple comparisons correction was
applied to correct to a significance level of 0.05 (uncorrected p-value 0.01). Higher

t-statistic values indicated MEDIC was more similar to the anatomical image than

15
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TOPUP (Figure 5). MEDIC distortion corrected data had higher local similarity to
the anatomical data than TOPUP distortion corrected data in gray matter. Areas
where TOPUP performed better were restricted to areas of white matter and CSF,

particularly in white matter areas adjacent to the lateral ventricle.

16
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Fig. 6 Anatomical alignment metrics comparing MEDIC and TOPUP distortion correction meth-
ods. Distortion corrected functional images from each distortion correction method were compared
against each T1w/T2w anatomical image for each alignment measure, where bar plots for each metric
are displayed. Each bar plot represents the distribution of each anatomical alignment metric on each
scan of the Adolescent dataset (N = 185). Orange bars indicate data corrected with MEDIC, while
blue bars indicate data corrected with TOPUP. Bolded labels indicate that the alignment metric was
statistically significant in favor of the method. (a,d) Spatial mean R? of local spotlight metric for both
T1lw and T2w images (see also Figure 5). Higher values indicate that a scan had, on average, higher
local similarity to the anatomical images. Global alignment metrics such as (b,f) R2, (c,g) correlation
of the gradient magnitude, and (d,h) normalized mutual information assess global correspondence of
the distortion corrected functional data to T1lw and T2w anatomical images [18]. Higher values indi-
cate greater global image similarity to the anatomical image. (i,j,k,]) Segmentation metrics assessing
accuracy of freesurfer based tissue segmentation on each functional image. Higher AUC values indi-

cate that the anatomical segmentation was able to better discriminate between tissue types.
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267 Further quantifying the local similarity, we computed the mean of R? values
s across all spotlights for each scan (Figure 6a). MEDIC significantly outperformed
%0 static TOPUP correction in both the T1w R? spotlight (MEDIC = 0.068 (SD: 0.007);
2o TOPUP = 0.066 (SD: 0.008); two-tailed paired t = 7.133; p < 0.001; df = 184)
onand T2w R? spotlight (MEDIC = 0.083 (SD: 0.010); TOPUP = 0.081 (SD: 0.011);
o two-tailed paired t = 6.124; p < 0.001; df = 184) analyses.

273 To assess global image correspondence, we used multiple global metrics such as
o the squared correlation (R?), correlation of the gradient magnitude, and normalized
zs  mutual information (NMI) between each distortion corrected functional image and
o each Tlw and T2w anatomical image (Figure 6b) [18]. MEDIC significantly outper-
or formed TOPUP on both Tlw R? (MEDIC = 0.063 (SD: 0.028); TOPUP = 0.060
s (SD: 0.028); two-tailed paired t = 11.284; p < 0.001; df = 184) and T2w R? (MEDIC
oo = 0.457 (SD: 0.053); TOPUP = 0.454 (SD: 0.056); two-tailed paired t = 2.729; p =
20 0.007; df = 184) metrics, as well as the T1lw gradient correlation (MEDIC = 0.43
s (SD: 0.028); TOPUP = 0.414 (SD: 0.036); two-tailed paired t = 11.727; p < 0.001;
22 df = 184) metric. TOPUP slightly outperformed MEDIC on the T2w NMI (MEDIC
2 = 0.836 (SD: 0.026); TOPUP = 0.838 (SD: 0.026); two-tailed paired t = -1.985; p =
20 0.049; df = 184) metric.

285 Finally, we examined alignment along specific tissue boundaries, delineated by the
2 participant’s anatomical segmentation [18]. By overlaying the participant’s anatomical
27 segmentation on the time-average fMRI data, and computing the Receiver Operat-
2 ing Characteristic (ROC) curve, we determined how well each distortion correction
29 method correctly delineated tissue types along specific boundaries by computing the
20 area under the curve (AUC) value (Figure 6¢). MEDIC significantly outperformed
21 TOPUP correction in both the brain/exterior (MEDIC = 0.735 (SD: 0.035); TOPUP
20 = 0.729 (SD: 0.034); two-tailed paired t=11.488; p < 0.001; df = 184) the gray/white
23 matter (MEDIC = 0.735 (SD: 0.035); TOPUP = 0.729 (SD: 0.034); two-tailed paired

18
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t=11.488; p < 0.001; df = 184), and cerebellum/exterior (MEDIC = 0.607 (SD: 20
0.041); TOPUP = 0.596 (SD: 0.049); two-tailed paired t=>5.073; p < 0.001; df = 184) s

boundaries. 206

3 Discussion 207

In fMRI studies, distortion of the source images is transmitted downstream, distorting 2
all derived research findings and clinical maps [1]. Previously state-of-the-art methods 20
employed static distortion correction techniques that depend on the acquisition of a 300
separate field map image [5, 6]. However, static field mapping is limiting and becomes  3n
less accurate with larger head displacements during a scan [7, 9]. Given the massive 3o
challenge of head motion, especially in children, the elderly, and patient populations s
[10, 20-22], motion robust distortion correction is crucial for the success of fMRI s
studies in these subpopulations. 305

Despite the conceptual superiority of dynamic field mapping approaches, prior s
attempts have not been widely adopted by the neuroimaging community [23, 24]. This a0
is largely due to the lack of availability of multi-echo sequences, difficulty in imple- 308
mentation, and widely available open-source releases of said approaches. With the 300
recent growing interest and use of ME-fMRI for neuroimaging studies, our proposed 3w
method, MEDIC, provides researchers the capability to address dynamic BO changes su

due to head motion. MEDIC is provided as a freely available open source tool, and s

will further motivate the use of ME-fMRI in neuroimaging studies. a3
3.1 ME-fMRI enhances sensitivity, reliability, and signal 314
coverage in neuroimaging 515

ME-fMRI has many benefits over single-echo fMRI (SE-fMRI) and has been estab- s
lished for at least a decade [13, 14, 25]. ME-fMRI allows for multiple echoes to be a7

analyzed separately or as an optimally combined time series, which exhibits higher s

19
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a0 SNR and improves statistical power of analyses in regions of high susceptibility. Mul-
20 tiple echoes also allow for additional denoising capabilities through ME-ICA [13, 26]
s or denoising pipelines, such as tedana [27].

322 Recent neuroimaging breakthroughs, such as the discovery of the somato-cognitive
23 action network (SCAN), in the central sulcus, which was previously thought to be
24 the exclusive domain of effector-specific primary motor cortex [16], utilized ME-fMRI
»s  data. ME-fMRI was also used to discover that the ventromedial prefrontal cortex
»s (vimmPFC), a region plagued by massive distortions, includes an enlarged salience
s network node in depression patients [28]. Similarly, ME-fMRI was able to identify
28 individual-specific persistent brain changes after a single dose of the psychedelic
2s  psilocybin [29].

330 Patient- (clinical) and individual-specific (research) precision functional mapping
s (PFM) [30] are specific applications of RSFC and task fMRI where ME-fMRI and by
s extension MEDIC are most valuable. Averaging fMRI data across individuals blurs
a3 spatial boundaries, effectively smoothing the underlying data [16, 30-37]. Therefore,
s group-averaging partially obscures the greater spatial precision obtainable with ME-
s fMRI and MEDIC. Hence, it may not be a coincidence that several strong proponents
s of ME-fMRI have been using it for PFM, through which greater confidence in spatial
s details can be directly converted into neuroscientific insights [15, 16, 28, 29, 38]. If
18 the goal is individual-specific PFM, then ME-fMRI and MEDIC improve SNR, and
139 distortion correction, with the minor cost of slightly longer data processing times
s and increase in TR. Furthermore, with MEDIC, field map scans can be eliminated
s from the scanning protocol, eliminating the risk that some field maps end up motion

corrupted or lost altogether. 32

20
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3.2 MEDIC further boosts the capabilities of ME-fMRI 343

through dynamic field map correction 344

Head motion also impacts distortions by changing the spatial distribution of the BO s
field inhomogeneity [7, 9]. Changes to the B0 magnetic field result when someone s
rotates their head out of the slice plane (i.e. readout and phase encoding directions). s
Traditional static field maps cannot account for these time-varying changes to the s
field, since they only measure the B0 field at a single time point before or after a scan. s
In addition, any head motion that occurs between the field map acquisition and the sso
fMRI scan will also reduce the accuracy of distortion correction due to localization s
errors. 352

Computing the phase evolution across multiple echo times across a ME-fMRI 35
sequence allows one to compute a field map for each data frame, allowing for the 35
tracking of magnetic field (B0) inhomogeneities dynamically and as close to real-time 35
as possible. With MEDIC, this results in two main benefits. First, this allows MEDIC 356
to measure the B0 field at each TR, allowing for the measurement of any time-varying sz
changes to the field. Second, since MEDIC field maps are inherently co-registered to s
the ME-fMRI data it is correcting, and eliminating any errors in co-registration that s
may arise from separate field map acquisitions. 360

As a general observation, for every 1 degree of head rotation outside of the slice sa
plane, we estimated a maximum change in the B0 field of 5 Hz/0.3 mm in our data, s
representing the maximum error in distortion correction one would obtain by using a 3
static field map. Therefore, any functional connectivity analysis done in the presence s
of notable head motion would benefit from MEDIC dynamic distortion corrections. s
In living participants, motion can never be fully eliminated, even when using external s
devices such as head restraints to mitigate head motion [39] or sedation, which often is s

s prohibitive in studies. Infants, children, the elderly and patient populations typically

21
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s have the highest head motion [10, 20-22] and utilization of ME-fMRI and MEDIC

s will likely be most beneficial in these groups.

= 3.3 MEDIC provides superior distortion correction due to

m self-reference

sz MEDIC field maps generated correction results more similar to group-averaged data
s than those produced by the TOPUP method. Importantly, this occurred even though
a5 the group-averaged data had been distortion-corrected using TOPUP- a circumstance
we that one would assume would inherently be biased towards TOPUP’s performance.
sw - Notably, we observed greater correspondence between MEDIC and the group-averaged
s functional connectivity maps within the medial prefrontal cortex and the occipital
;9 regions. In addition, there were still large local distortions even after correction with
0 TOPUP, particularly in the dorsal cortical surface and cerebellum.

381 We attribute MEDIC’s superior distortion correction capabilities to the fact that
;22 MEDIC uses field maps sourced from the same data it is correcting. This “self-
;3 reference” property provides two main benefits: first, fluctuations in head motion may
s« have led to differences in the measured field, which static field maps only measure at
;s a single point in time, potentially causing inaccurate localization of B0 field inhomo-
s geneities and, consequently, less than ideal distortion correction. Second, a single time
;7 point static field map might not accurately estimate the BO field inhomogeneity of
s the scan it is meant to correct, leading to suboptimal distortion correction. This can
;0 result from a mismatch in acquisition parameters from the fMRI data and the field
w0 map data, leading to differences in affected BO inhomogeneity. In such cases, MEDIC

based distortion correction is able to correct for additional off-resonance effects. 301
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3.4 On parameter selection in ME-fMRI and MEDIC 302

Despite the benefits of ME-fMRI, one drawback is the requisite increase in TR due to 303
the collection of additional echoes [25]. For single-echo fMRI acquisitions, echo times 30
are typically around ~30 ms (TE). In multi-echo, any additional echo after this time 30
represents the increase in TR over a single-echo acquisition. For example, for a 3-echo 39
acquisition with echo times of 15 ms, 30 ms, and 45 ms, would require an extra 15 3o
ms per RF pulse compared to a single echo acquisition. This increase in TR can be 3
mitigated if one were to reduce the number of slices, at the cost of a smaller field of view 300
(FOV), or by increasing the parallel imaging acceleration factors, while maintaining 0
the same FOV. Acceleration techniques, including both in-plane undersampling and
multi-band (simultaneous multi-slice), are a must if one desires multiple echoes, a TR 42
of ~1 second and resolutions of 2.4 mm or smaller. Most recent ME fMRI sequences 403
seem to utilize 3-5 echoes with the second echo around ~30 ms [15, 40-43]. The 4
acquisition of higher spatial resolution images is additionally challenging with ME 405
fMRI as even more acceleration is required in order to acquire multiple echoes without 406
unacceptably long readout times and/or TRs. a07

The addition of MEDIC does not largely change these considerations. In our study, s
relatively late echo times were used (TE1 = 14.2 ms, TE2 = 38.93 ms), but still found 40
to be effective at measuring phase and correcting distortion. The use of earlier echo 0
times may improve the performance of MEDIC even further, particularly in areas of
high susceptibility [44]. MEDIC only requires the use of two echoes to compute a field a2
map, which is under the typical acquisition of 3-5 echoes. However, in cases where users a3
may want to use larger echo spacings, the identifiability of the field map computation .
may breakdown, preventing accurate field map estimations. In such cases, more echoes a5

a6 may be preferred to obtain a unique solution.
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a7 3.5 MEDIC is computationally efficient and open-source

as Our open-source implementation of MEDIC is optimized, resulting in computational
a0 times comparable to TOPUP for an entire dataset. Overall, the computational time
w20 to estimate MEDIC field maps over an entire dataset is generally comparable to the
w21 processing time required by TOPUP in its field map estimation process. Computation
w22 can be further reduced by running MEDIC’s parallel algorithm on a computer with
23 multiple cores.

424 While previous methods of multi-echo dynamic distortion correction have
s been suggested [23, 24], lack of functioning open source implementations of
w2 such methods have impeded their adoption. We therefore release our imple-
27 mentation of MEDIC as an open-source package, which can be found at
w2 https://github.com/vanandrew/warpkit. This package is a Python library that can
w20 be integrated in a variety of processing pipelines and existing neuroimaging tools with
a0 output formats into AFNI, FSL, and ANTs [45-47]. We hope that this will facilitate

s the adoption of MEDIC in the neuroimaging community.

= 3.6 Multi-echo framewise distortion correction for motion

- robust fTIMRI

s MEDIC’s dynamic, frame-wise distortion correction, is not only conceptually supe-
a5 rior to static field-map approaches, but significantly improves the accuracy of fMRI
a6 maps, especially in the presence of head motion. MEDIC is easy-to-implement and
s use and despite computing a dynamic field map at each data frame, is no slower than
s previously standard static distortion correction (i.e., TOPUP). ME-fMRI is recently
20 gaining popularity more rapidly, at least in part due to its benefits for patient- or
wo  individual-specific precision functional mapping (PFM) [30]. MEDIC’s dynamic dis-
a1 tortion correction capability provides another driving reason to acquire multi-echo

data. For fMRI applications aiming to maximize spatial precision, such as PFM, or
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intervention and neuromodulation targeting with fMRI, MEDIC provides yet another s

aa  powerful reason to switch from single- to multi-echo.
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« 4 Methods

«s 4.1 Multi-Echo DIstortion Correction (MEDIC)

w7 To obtain field maps at each frame of a ME-fMRI acquisition, phase at multiple echo
ws  times must be measured. The field map is the slope of the relationship between phase
wo and echo time. Therefore, at a minimum, at least two echoes are needed to compute
0 the phase accumulation over time, i.e. the field map.

451 Computing the field map is complicated by several factors. First, the phase mea-
2 sured at each echo time contains a constant offset, such that the phase at zero echo
»s3  time is not zero. This is a result of the coil combination process during reconstruction
¢ of the phase images, which can result in a phase offset [48]. The second is the wrap-
s ping of the phase measurements, which bounds the domain of the measured phase
w6 between [—m, ] [49]. This is a result of the phase being a periodic function and is a
7 common problem when measuring a signal’s phase information. Finally, the measured
s field map obtained from an ME-fMRI image is in the space of the distorted image,

»so  and must be transformed to the undistorted space to be used for distortion correction.

w0 4.1.1 The wrapped phase difference problem

w1 Consider a single frame of ME-fMRI data, where n echoes of phase and magnitude
w2 data are acquired at different echo times tq,ts,...,¢,. Using the phase difference
s:  method [5, 49], the phase information of the ME-EPI data can be related to the B0

s+ field inhomogeneity by the following:

A¢ = yAByAt (1)

465 where A¢ is the phase difference between two echoes, v is the gyromagnetic ratio,

ABjy is the B0 field inhomogeneity, and t is the echo time difference. For brevity, we s
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denote the field map as f, which is defined as f = YA By. When images acquired from s

more than two echoes are available, Equation 1 generalizes to: 468
¢1(7) t1
$2(7) ta

=f . (2)

1G] ]

where 7 is the spatial location for a given voxel, and n denotes the number of e
echoes in the data. Solving Equation 2 for f amounts to solving N linear systems, o
where N is the number of voxels in the image. an

In practice, solving Equation 2 is complicated by two additional effects. The first is
that phase information acquired from the scanner is wrapped, such that phase values 3
beyond the range of [—m, 7|, are wrapped back into the other side of the interval.
Second, Equation 2 assumes that the phase accumulation at t=0 is zero, a fact which, s

depending on the specifics of the coil-combine algorithm applied to the phase data, is s

often not the case. The full model accounting for both of these effects is given by: ar7

[ (61 (7)"] h

Q 7)Y
<<§m» =56 || + 6009 3)

(60 (M) 4

where Q is a wrapping operator that, such that ¢*mPP¢d = Q(4,,), the wrapped s
phase, and (-)* is an unwrapping operator, such that ¢, = (Q(¢,))* = ¢¥rwPred 4 4o
2nk for some integer k, and ¢g is the phase accumulation at ¢ = 0. Note that the s
wrapped phase ¢¥*PPe? is what is measured off the scanner. With the addition of

phase wrapping and offset effects, Equation 3 is no longer a simple linear system when s

w3 trying to solve for f.
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s 4.1.2 Phase offset correction and unwrapping

w5 Estimation and removal of the phase offset is accomplished using the MCPC-3D-S
s algorithm [48]. MCPC-3D-S estimates the phase offset by computing the unwrapped
w7 phase difference between the first and second echoes of the data, then estimating
w8 the phase offset by assuming linear phase accumulation between the first and second

w9 echoes. This is given by the following:

tq
to —t1

) = A () - (27 ) (@eal) - A mod2r (@)
490 In the case of MCPC-3D-S, the ROMEQO unwrapping algorithm is used to unwrap
w (Qp2(7) — QUep1(7))) [49]. Once ¢y is computed, the effects of the phase offset can
w2 be removed from Equation 3 by subtracting ¢y from the phase at each echo time.
403 Phase unwrapping is performed using the ROMEO algorithm [49]. Phase informa-
ws  tion at later echoes tend to suffer from phase wrapping more than phase information
w5 at earlier echoes due to larger amounts of phase accumulation. This can degrade the
w6 performance of phase unwrapping algorithms that only consider the phase unwrapping
w7 problem at each echo time independently. ROMEO is able to constrain the unwrapping
ws solution across all echoes by modeling the linear phase accumulation across echoes.
w0 This provides more accurate phase unwrapping solutions over other phase unwrapping

so methods, but requires the removal of phase offsets prior to unwrapping.

sn  4.1.3 Temporal phase correction

so Once the phases of all frames in a single ME-fMRI scan are unwrapped. A temporal
so3 correction step is applied to ensure phase unwrapping consistency across frames. For
sa each frame, the phase of the first echo is considered against every other frame in
sos an ME-fMRI scan that has a similar correlation with their corresponding magnitude

image. Within a group of frames with a correlational similarity of 0.98 or greater, s
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the phase values are corrected by adding/subtracting the nearest 27 multiple that s

minimizes the difference to the mean phase value of the group, given by: 508

o ()

A _
o157 = 2 Vm,l(q) ¢m,1-‘

where m denotes the frame index of the EPI time series, || denotes the rounding s
operator, and ¢, 1 () is the mean phase value for the grouped first echo frames similar  swo
to frame m. Temporal phase correction for subsequent echos is performed by linearly su

projecting the expected phase values beyond the previous echos: 512

n—1
st () = 2m { - (%,n(m DY %’i(mﬂ (6)

n—1 ,9
Pl B

where n denotes the index of any echo after the first echo, and ¢ is the echo time s

for the associated echo. 514

4.1.4 Weighted field map computation 515

Field map estimation is accomplished with a weighted linear regression model. Since s
signal decay increases with echo time, SNR at later echoes tends to be lower than s
at earlier echoes, especially in areas of high susceptibility. To reduce the influence of s
voxels with low signal on the field map estimation, we weight by the squared magnitude s
of the signal at each echo time. Solving for Equation 2 then becomes a weighted least s

squares problem: 521

We(r) = Wf(r)t (7)
where W is a diagonal weight matrix containing the magnitude of the signal at s2
each echo time, ¢(7) is the vector of phase values at each echo time for each voxel, sz
and t is the vector of echo times. Equation 7 is computed for each frame to yield a s

s fleld map time series corresponding to each frame of the ME-fMRI time series.
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26 4.1.5 Low rank approximation

sz 'To reduce the effects of temporal noise components in the field maps, we employ a
ss  low rank approximation approach. This step is vital for removing large field changes
s0  along the borders of the brain, which tend to contain spurious changes in the field
s  map due to a lack of signal or high measurement noise. The low rank approximation

531 problem can be formulated as follows:

min Hf - f” subject to rank(f) <n (8)
f 2

532 where f is the field map time series, reshaped as an N x T matrix (where N is the
s33 voxel dimension and T is the time dimension), f is the low rank approximation of f,
s and n is the rank of the approximation. The solution to Equation 8 is given by the

s3  Eckart—Young-Mirsky theorem [50], which is simply the n-truncated singular value

s3  decomposition of f:

f=us,vT (9)

537 where U and V are the left and right singular vectors of f, respectively, and %,
s3s  is the diagonal matrix of the first n singular values of f. For the solution estimated

s9  from Equation 9 in our results, we used n = 10.

s0 4.1.6 Displacement Field Inversion

sa Finally, to obtain the final field map in the undistorted space, each frame of the field
s2 map time series is converted to a displacement field using the readout time and voxel
sa3  size of the data. This displacement field is then inverted to the nearest diffeomorphic
s4 inverse to obtain the final field map in the undistorted space. Displacement field
ss  inversion was performed using the InvertDisplacementFieldImageFilter of the ITK

library [51]. 546

30


https://doi.org/10.1101/2023.11.28.568744
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.28.568744; this version posted November 29, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

4.2 Data Acquisition 547
4.2.1 Head motion dataset 548

Head motion data was collected on a single adult participant to assess MEDIC’s s
capability in measuring and correcting B0 field changes due to head movement. Par-  sso
ticipant was asked to rotate their head along each cardinal axis of the scanner, while ss
3 TOPUP spin-echo field maps (TR: 8 s, TE: 66 ms, 72 Slices, FOV: 110x110, Voxel ss
Size: 2.0mm) pairs and magnitude/phase ME-fMRI data (TR: 1.761 s, TEs: 14.2, s
38.93, 63.66, 88.39, 113.12 ms, 72 Slices, FOV: 110x110, Voxel Size: 2.0 mm, Multi- ss
Band: 6, iPAT: 2) were collected using a 3T whole-body scanner (Prisma, Siemens — ss
Healthcare). For each rotated head position, ~3 minutes of ME-fMRI data was col-  ss
lected. To serve as a reference for highly precise resting-state functional connectivity ssz
data, ~150 minutes of additional ME-fMRI data was collected over 4 scanning ses-  sss
sions. For anatomical images, T1lw (Multi-echo MPRAGE, TR: 2.5 s, TEs: 1.81, 3.6, s
5.39, 7.18 ms, 208 Slices, FOV: 300x300, Voxel Size: 0.8 mm, Bandwidth: 745 Hz/px)  seo
and T2w (T2 SPACE, TR: 3.2, TE: 565 ms, 176 Slices, Turbo Factor: 190, FOV: s
256x256, Voxel Size: 1 mm, Bandwidth: 240 Hz/px) were collected. 562

4.2.2 Adolescent dataset 563

A dataset with 21 participants was acquired to assess MEDIC’s distortion correction — se
performance on a group level (ages: 9-12; 8M, 13F; 15 Control, 1 ASD, 6 ADHD). s
TOPUP spin-echo field maps (TR: 8 s, TE: 66 ms, 72 Slices, FOV: 110x110, Voxel s
Size: 2.0mm) and magnitude/phase ME-fMRI data (TR: 1.761 s, TEs: 14.2, 38.93, s«
63.66, 88.39, 113.12 ms, 72 Slices, FOV: 110x110, Voxel Size: 2.0 mm, Multi-Band: 6, ses
iPAT: 2) was collected using a 3T whole-body scanner (Prisma, Siemens Healthcare). se
For each participant, three scans of ME-fMRI data were collected (2x ~16 minutes, 1x s
~10 minutes) across 2-5 sessions. For anatomical images, T1lw (MPRAGE, TR: 2.5s, sn
sz TEs: 2.9 ms, 176 Slices, FOV: 256x256, Voxel Size: 1.0 mm, Bandwidth: 240 Hz/px)
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and T2w (T2 SPACE, TR: 3.2, TE: 565 ms, 176 Slices, Turbo Factor: 200, FOV:
256x256, Voxel Size: 1 mm, Bandwidth: 4882 Hz/px) images were also collected. Real

time motion monitoring was used during all acquisitions [52].

4.2.3 UMinn dataset

A single adult participant (age: 25) with TOPUP spin-echo field maps (TR: 8 s, TE:
66 ms, 72 Slices, FOV: 110x110, Voxel Size: 2.0mm) and magnitude/phase ME-fMRI
data (TR: 1.761 s, TEs: 14.2, 38.93, 63.66, 838.39, 113.12 ms, 72 Slices, FOV: 110x110,
Voxel Size: 2.0 mm, Multi-Band: 6, iPAT: 2) was collected using a 3T whole-body
scanner (Prisma, Siemens Healthcare). ME-fMRI data was collected over 4 sessions,
with a total of ~174 minutes of resting-state data acquired. For anatomical images,
Tlw (MPRAGE, TR: 2.5 s, TEs: 2.9 ms, 176 Slices, FOV: 256x256, Voxel Size: 1.0
mm, Bandwidth: 240 Hz/px) and T2w (T2 SPACE, TR: 3.2, TE: 565 ms, 176 Slices,
Turbo Factor: 190, FOV: 256x256, Voxel Size: 1 mm, Bandwidth: 240 Hz/px) were

collected.

4.2.4 Penn dataset

A single adult participant (age: 30) with TOPUP spin-echo field maps (TR: 8 s, TE:
66 ms, 72 Slices, FOV: 110x110, Voxel Size: 2.0mm) and magnitude/phase ME-fMRI
data (TR: 1.761 s, TEs: 14.2, 38.93, 63.66, 88.39, 113.12 ms, 72 Slices, FOV: 110x110,
Voxel Size: 2.0 mm, Multi-Band: 6, iPAT: 2) was collected using a 3T whole-body
scanner (Prisma, Siemens Healthcare). Two ~6 minute scans of resting-stage ME-fMRI
data was collected. For anatomical images only a Tlw (MPRAGE, TR: 2.5 s, TEs:
2.9 ms, 176 Slices, FOV: 256x256, Voxel Size: 1.0 mm, Bandwidth: 240 Hz/px) image

was collected.
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4.2.5 ABCD dataset 596

A large-scale group averaged resting-state functional connectivity map from the Ado-  se
lescent Brain Cognitive Development (ABCD) study was used to compare individual — ses
functional connectivity to averaged group data. This group average map used strict s
denoising (N = 3,928; >8 min; RSFC data post frame censoring at a filtered frame- o0
wise displacement <0.08 mm) to remove the effects of nuisance variables such as head o
motion and respiration [17]. During ABCD data preprocessing, FSL TOPUP was used o0
for distortion correction. More information on ABCD dataset processing can be found 0

in [53]. 604

4.3 Processing pipeline 605

We compared MEDIC’s dynamic distortion correction to the gold-standard of static s
distortion correction, FSL TOPUP [6]. For all comparisons, a common pipeline was oo
used where all processing steps were kept the same, with the exception of the distortion s
correction method. For the MEDIC pipeline, field maps were computed and corrected 0o
for each frame of the ME-fMRI data using MEDIC. For the TOPUP pipeline, field w0
maps were processed using FSL TOPUP [6], then coregistered to the ME-fMRI data 1
using 4dfp tools [54]. The same field map was then applied to each frame of the ME- e
fMRI for distortion correction. Note that for the low motion dataset, only TOPUP &3
correction was used as a distortion correction method during preprocessing. 614

Both T1w and T2w anatomical data were processed by debiasing using FSL FAST s
[46] before passing into Freesurfer for anatomical segmentation [19]. Anatomical data e
was then aligned to the MNI152 atlas [55, 56] using 4dfp tools [54]. For ME-fMRI &7
data, slice time correction and motion correction using 4dfp tools. Bias field correction e
of the ME-fMRI data was performed using N4 Bias field correction [47]. Coregistra- e
tion of the functional data to the anatomical data via the T2w image was performed s

sz using 4dfp tools [54]. The final atlas aligned functional data was computed using a one
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s step resampling of the concatenated transforms (motion correction, distortion correc-
23 tion, functional to anatomical coregistration, anatomical to atlas coregistration) using
s« FSL applywarp [46]. The ME-fMRI data was combined into an optimally weighted
es combined image prior to nuisance regression and mapping to the surface using Con-
s26  nectome Workbench [57]. Frame censoring was applied to remove the effects of head

s motion using a FD threshold of 0.08 after filtering for respiration [58].

o 4.4 Code Availability

60 The implementation for MEDIC can be found at
s0 https://github.com/vanandrew/warpkit. Code for the processing pipeline
sn can be found at https://github.com/DosenbachGreene/processing_pipeline.
2 Code for data analysis and figure generation can be found at

63 https://github.com/vanandrew/medic_ analysis.
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« 1 Supplemental Material

7.1 Rigid-body alignment parameters for head motion data. 662

Supplementary Table 1 Average (Std. Dev.) of alignment parameters for each head position

Task rx (deg) ry (deg) rz (deg) tx (mm) ty (mm) tz (mm)

Neutral -0.09 (0.04) -0.15 (0.08) -0.08 (0.09)  -0.17 (0.13) -0.06 (0.04) 0.02 (0.07)
Rotate +z  -1.54 (0.10) -1.47 (0.05) 14.96 (0.08) -2.26 (0.23) -0.69 (0.04) -2.94 (0.31)
Rotate -z 0.9 (0.07) ~1.90 (0.08) -9.78 (0.05) -3.84 (0.05) -0.26 (0.04) -1.52 (0.09)
Rotate +x  10.64 (0.27) -2.510 (0.15) 0.85 (0.07) -0.98 (0.10) 4.93 (0.18) 3.78 (0.17)
Rotate -x  -13.73 (0.24) -2.799 (0.07)  -0.94 (0.16)  -2.45 (0.25) -4.22 (0.07) 0.71 (0.14)
Rotate +y  -1.38 (0.05) -10.79 (0.06) 21.44 (0.06)  2.72 (0.08)  -2.15 (0.04) -5.35 (0.15)
Rotate -y 0.09 (0.09) 8.58 (0.22)  -18.85 (0.12)  -5.79 (0.13) -1.21 (0.04) -3.31 (0.07)
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7.2 Anatomical alignment metrics comparing MEDIC and 663

664 TOPUP distortion correction methods.

Supplementary Table 2 Alignment metrics MEDIC vs. TOPUP

Metric MEDIC TOPUP t-statistic ~ p-value  df

Tlw R? Spotlight 0.068 (0.007)  0.066 (0.008) 7.133 <0.001 184
T2w R? Spotlight 0.083 (0.010)  0.081 (0.011)  6.124 <0.001 184
Tlw R2 0.063 (0.028)  0.060 (0.028) 11.284 <0.001 184
T2w R? 0.457 (0.053)  0.454 (0.056)  2.729 0.007 184
T1w Grad. Correlation 0.43 (0.028) 0.414 (0.036)  11.727 <0.001 184
T2w Grad. Correlation 0.637 (0.04) 0.638 (0.054) -0.371 0.711 184
T1lw NMI 0.872 (0.029) 0.872 (0.029) -0.106 0.915 184
T2w NMI 0.836 (0.026) 0.838 (0.026) -1.985 0.049 184
Gray/White Matter AUC 0.692 (0.031) 0.686 (0.036) 6.598 <0.001 184
Brain/Exterior AUC 0.735 (0.035)  0.729 (0.034) 11.488 <0.001 184
Ventricles/White Matter AUC  0.829 (0.057) 0.829 (0.062) -0.058 0.954 184
Cerebellum, Exterior AUC 0.607 (0.041)  0.596 (0.049)  5.073 <0.001 184
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7.3 TOPUP field map for high motion data 665

TOPUP field map for High motion data

Supplemental Figure 1 TOPUP field map for high motion data. Spin-echo field maps (TR: 8 s,
TE: 66 ms, 72 Slices, FOV: 110x110, Voxel Size: 2.0mm) were collected prior to high motion data
collection to simulate a typical acquisition of a field map. Field map data was acquired when the
head was in the neutral position. Scans were subsequently passed into TOPUP for B0 field
estimation using TOPUP’s default settings. The same field map was applied to all frames for

correction, regardless of head position, after motion correction to a reference frame.
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7.4 MEDIC field maps can measure respiration induced BO 666

field changes 667

One well known phenomenon is the effect of respiration on the BO field [59]. As s
the participant inhales and exhales, the shifting of organs within the thoracic and s
abdominal regions, coupled with alterations in the oxygenation levels of the breathed- en
in gas, leads to global oscillations in the B0 field. These global oscillations, through
dynamic field mapping, can be measured by MEDIC field maps. We aimed to examine o2
whether respiration could be measured solely with a MEDIC dynamic field map, e
through averaging of all voxels in the field map and high pass filtering the resultant e
signal (4th order butterworth, 0.15 Hz cutoff frequency) to obtain an estimation of e

e the participant’s respiration signal.

39


https://doi.org/10.1101/2023.11.28.568744
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.28.568744; this version posted November 29, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

677

678

679

680

a Spectral Power Density

60

NS
S o

Respiratory Belt
Power Density

o
S o

Ns
S o

MEDIC Field Map
Power Density

o

PN
S o

Power Density
r
o

Respiratory Belt
[N
[s} o o

)
S

MEDIC Field Map
Power Density

o

NS
S ©

)
S

Respiratory Belt
Power Density

PN
S O o

Power Density
N
o

MEDIC Field Map

o

Run1

Unfiltered
Filtered

0.00 0.05 010 015
Frequency (Hz)

Run 2

Unfiltered
Filtered

0.00 0.05 010 015
Frequency (Hz)

Run 3

Unfiltered
Filtered

0.00 0.05 0.0 0.5
Frequency (Hz)

0.20

0.20

0.20

0.25

0.25

0.25

Signal from

MEDIC Field Map ~ Respiratory Belt

Signal from

Signal from
Respiratory Belt

Signal from
MEDIC Field Map

Signal from
Respiratory Belt

Signal from
MEDIC Field Map

|
N

Supplemental Figure 2 Comparison of respiration

Respiratory Signal

R=0.834
200 400 600 800
Time (seconds)
R=0747
200 400 600 800
Time (seconds)
R=0.83

200 300 400 500 600 700 800
Time (seconds)

signal from respiratory belt against

respiration signal extracted from MEDIC field maps across 3 runs of the same participant. All data

was mean/std. dev. normalized before each analysis. (a) Power spectral density of signal from

respiratory belt and MEDIC field maps. Red spectral plot indicates spectral frequency content

collected from respiratory belt data from each run. Green and purple spectral plots indicate the

frequency content from the average field map time series before and after filtering with a high pass

filter for each run (butterworth filter; 4th order; cutoff frequency 0.15 Hz). (b) Signal from the

respiratory belt (red) and filtered signal (purple) from the MEDIC field across each run. R values

above each plot run indicates the correlation between the two signals.

MEDIC field maps were computed for a single participant with three runs of

ME-EPI data with corresponding respiration belt data for comparison Supplemental

Fig. 2. MEDIC field maps contain spectral frequency content in the 0.2 Hz to 0.3 Hz

band, which generally corresponds to frequencies associated with respiration (~12 - 20

breaths per minute). Filtering the MEDIC field map signal with a high pass filter (4th e
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order butterworth, 0.15 Hz cutoff frequency) isolates these frequencies for comparison e
to the respiration signal acquired from the respiratory belt. This filtered signal has a s
high correlation to the respiratory belt signal across each run (Run 1: R = 0.834; Run s
2: R = 0.747; Run 3: R = 0.830) indicating successful extraction of the respiration ess
signal from a MEDIC field map. 686

This capability offers a synchronized physiological monitoring feature that is inher- s
ently time-locked to imaging data. As a result, MEDIC can provide either a redundant s
or supplemental means of collecting respiration signals during scanning sessions. This s
is especially crucial given the complexities and challenges of capturing respiration s
data due to issues like respiratory belt clipping and/or malfunctions. Moreover, the en
respiration signal used in MEDIC field maps may be used to improve current data s

63 pre-processing and analysis methods, thereby enhancing data quality.
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