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Abstract45

Functional MRI (fMRI) data are severely distorted by magnetic field (B0) inho-46

mogeneities which currently must be corrected using separately acquired field47

map data. However, changes in the head position of a scanning participant across48

fMRI frames can cause changes in the B0 field, preventing accurate correction49

of geometric distortions. Additionally, field maps can be corrupted by move-50

ment during their acquisition, preventing distortion correction altogether. In this51

study, we use phase information from multi-echo (ME) fMRI data to dynamically52

sample distortion due to fluctuating B0 field inhomogeneity across frames by53

acquiring multiple echoes during a single EPI readout. Our distortion correction54

approach, MEDIC (Multi-Echo DIstortion Correction), accurately estimates B055

related distortions for each frame of multi-echo fMRI data. Here, we demonstrate56

that MEDIC’s framewise distortion correction produces improved alignment to57

anatomy and decreases the impact of head motion on resting-state functional58

connectivity (RSFC) maps, in higher motion data, when compared to the prior59

gold standard approach (i.e., TOPUP). Enhanced framewise distortion correc-60

tion with MEDIC, without the requirement for field map collection, furthers the61

advantage of multi-echo over single-echo fMRI.62

Keywords: Distortion Correction, fMRI, Multi-Echo63
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1 Introduction 64

Functional MRI (fMRI) data acquired using echo planar imaging (EPI) sequences are 65

prone to local image distortions due to magnetic field inhomogeneities (B0) arising 66

from differences in magnetic susceptibility, particularly across air-tissue interfaces [1]. 67

The orbitofrontal and inferior temporal cortices suffer the largest distortion due to 68

their proximity to the sinuses, mastoids, and ear canals [2], but distortion is present to 69

varying degrees across the brain. The presence of local image distortion is particularly 70

problematic for functional connectivity (FC) and task fMRI analyses, which rely on 71

accurate co-registration of functional and anatomical data. Image distortion degrades 72

the performance of registration algorithms used to align functional data to anatomical 73

data and prevents accurate spatial localization of anatomical features in fMRI studies 74

[3, 4]. 75

To correct geometric distortions in fMRI data, dedicated field map scans are 76

acquired before fMRI acquisitions to estimate the B0 field inhomogeneity [5, 6]. How- 77

ever, such static distortion correction approaches are vulnerable to head motion [7] 78

and represent only a snapshot of the field inhomogeneities. Head movement during 79

fMRI is notorious for introducing significant noise and systematic artifacts into the 80

data [8]. In the context of susceptibility artifact correction, head position and motion 81

will compromise the accuracy of the field map data, rendering distortion corrections 82

inaccurate. Distortion corrections estimated from separately-collected field maps are 83

accurate only so long as the participant’s head remains in the same position they were 84

in when the field map was collected. This is because rotations about axes orthogo- 85

nal to the main magnetic field (i.e., through-plane rotations, when slices are defined 86

axially) change the susceptibility induced inhomogeneities in the B0 magnetic field 87

[9] and thus the degree of distortion in the fMRI data. Thus, a distortion correc- 88

tion method that is robust to head motion and position would greatly benefit fMRI, 89

particularly where motion may be related to phenomena of interest [10]. 90
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Multi-echo fMRI (ME-fMRI) has been shown to have several advantages for BOLD91

signal detection relative to single-echo sequences [11]. By combining data across92

echoes, ME-fMRI increases BOLD signal sensitivity, particularly to regions that have93

significant signal dropout at typical single-echo times [12]. Further, multiple echo times94

allows modeling and separation of neurobiologically relevant fMRI signals from phys-95

iological and physics-related artifacts [13, 14]. These features of ME-fMRI have been96

shown to improve reliability of RSFC estimation, especially in clinically relevant sub-97

cortical brain regions like the subgenual cingulate, basal ganglia, and cerebellum [15].98

The improved reliability is attributed to greater signal-to-noise ratio (SNR), enabling99

more rapid and precise mapping of the brain.100

fMRI data are complex signals composed of magnitude and phase components,101

where magnitude images at each TR are typically used to evaluate temporal changes102

in BOLD contrast via T2∗. However, ME-fMRI phase data from each TR provides103

spatial and temporal information about magnetic field variations. By measuring the104

difference in phase between echoes in ME-fMRI data, the B0 field inhomogeneity can105

be estimated as the slope of the linear relationship between phase and echo time [5].106

Since phase information can be acquired at every TR, a frame-by-frame measure of107

the B0 field inhomogeneity can be estimated, allowing for more accurate, motion-108

robust, framewise correction of susceptibility distortion in ME-fMRI data. Frame-wise109

distortion correction in ME-fMRI also eliminates the need for separate field map110

acquisitions, which are required for static distortion correction111

Capitalizing on the recent surge in ME-fMRI usage, we built an easy-to-use,112

precise method for dynamic, frame-wise distortion correction. Here we describe our113

open-source, high-speed Multi-Echo DIstortion Correction (MEDIC) algorithm for114

correcting susceptibility distortions in fMRI data. Comparisons of MEDIC against a115

current gold standard method, which uses a single static B0 estimation and correction116

(TOPUP) [6], demonstrate its superiority, especially in the presence of head motion.117
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2 Results 118

2.1 MEDIC captures magnetic field changes due to head 119

motion 120

Changes in the B0 magnetic field due to head motion are primarily attributable to the 121

shifting position of susceptibility sources relative to the main magnetic field. Unlike 122

traditional static field map methods, MEDIC field maps capture these dynamic alter- 123

ations in a framewise manner. To demonstrate the efficacy of MEDIC in capturing 124

magnetic field changes due to motion, we collected data while a participant rotated 125

their head about each of the cardinal axes, in addition to acquiring data in a neutral 126

head position. Dynamic field maps were then extracted from the phase information 127

of the resulting scans using MEDIC. The difference between field maps acquired in 128

the neutral and rotated head positions was subsequently calculated (Neutral - Rota- 129

tion). Average and standard deviation motion parameters for each head position are 130

documented in Supplemental Table 1. 131
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Fig. 1 Changes in main magnetic field (B0) inhomogeneity due to head rotation. To assess the

effects of head motion on the B0 magnetic field, the participant rotated their head about each of the

three cardinal axes: rotations about the (z) slice axis (i.e. yaw), rotations about the (x) readout axis

(i.e. pitch), and rotations about the (y) phase encoding axis (i.e. roll). Each rotated head position was

held for 100 frames (~3 minutes). (a) Selected images from the fMRI time series as the participant

rotates their head about each axis (700 frames: ~20 minutes). (b) Field maps for each rotated head

position were computed using MEDIC and compared to the MEDIC field map computed in the

neutral (i.e. no rotation) head position. The average magnitude of rotation about each major axis is

listed for each column and corresponds to each rotated head position in (a). Warmer colors indicate

an increase in the B0 inhomogeneity and a voxel shift that is more posterior than the neutral position,

while cooler colors indicate the opposite.

As the participant rotated their head relative to the neutral resting head position,132

we observed changes in the B0 field estimated from the framewise field maps (Figure 1133

and Supplementary Videos 1-6). To measure the change in B0 inhomogeneity due to134

head motion, the field maps for each head rotation were rigid-body realigned to the135

6

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.28.568744doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.568744
http://creativecommons.org/licenses/by-nc-nd/4.0/


neutral head position and the difference was computed (Neutral - Rotation). Exemplar 136

frames of the acquired data show the participant rotating their head along each of 137

the cardinal axes in the scanner throughout the time series (Figure 1a). We found 138

that rotations about the slice direction (Z-axis) led to small changes in the field map 139

(Figure 1b). In contrast, rotations about the readout (X-axis) and phase encoding (Y- 140

axis) directions caused significant changes in the field map (Figure 1b), suggesting that 141

MEDIC-derived field maps are sensitive to changes in the B0 field due to motion. For 142

the particular ME-fMRI sequence used, for every change of 10 Hz in the B0 field, each 143

voxel is displaced by ~0.6 mm. For rotations about the slice direction, we observed 144

similar, but small, spatial patterns in the field map difference as in rotations about the 145

phase encoding direction. We largely attribute these similarities to the small Y-axis 146

rotations present in the Z-axis rotation data (Supplemental Table 1). 147

2.2 MEDIC dynamic distortion correction reduces the impact 148

of head motion on functional connectivity estimates 149

To assess the effects of these changes on resting-state functional connectivity (RSFC) 150

analyses, as well as the ability for MEDIC to mitigate these B0 field change effects, 151

we compared the functional connectivity maps of data derived from this head motion 152

study to a low motion dataset from the same participant. These data were prepro- 153

cessed (see Methods) and distortion corrected separately using both MEDIC and FSL 154

TOPUP, the current gold standard in distortion correction. A separately acquired field 155

map scan in the neutral head position (Frame 50, Figure 1a) was used for TOPUP 156

distortion correction, reflecting a typical data acquisition experiment of a single field 157

map acquisition at the beginning of a functional scan (See Supplemental Fig. 1). Both 158

MEDIC and TOPUP preprocessed data were projected to the surface. Functional 159

connectivity maps were computed from seeds in the dorso-lateral prefrontal cortex 160

(DLPFC), the extrastriate visual cortex, and the somato-cognitive action network 161
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(SCAN) region of primary motor cortex [16]. To assess the effectiveness of distortion162

correction, the quality of these maps were evaluated by comparing them to a large,163

low-motion dataset from the same participant, processed with TOPUP.164

Fig. 2 Comparison of dynamic (MEDIC) and static (TOPUP) distortion correction in high motion

data. To compare the effects of each distortion correction method (MEDIC vs. TOPUP) on high

motion data (700 frames: ~20 minutes), the data were otherwise processed identically. On the left most

column, a low motion dataset (5100 frames: ~150 minutes) of the same participant processed using

TOPUP was used as a reference for comparison. Middle and right columns show the resulting resting-

state functional connectivity maps for high motion data processed with each distortion correction

method (see Supplemental Fig. 1 for the TOPUP field map used) and Fisher-z transformed. Seeds

in (a) DLPFC, (b) occipital cortex, and (c) somato-cognitive action network (SCAN), were placed

to review the effectiveness of correction and are marked by a black dot. Correlations between the

standard (low motion data) and MEDIC/TOPUP (high motion data) in each seed are displayed

under each seed map. Seed maps are thresholded to only display connectivity values above |r| > 0.25

for easier visualization.
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The exemplar seed maps show that high motion MEDIC corrected data were more 165

similar to the low motion data than TOPUP corrected high motion data, despite the 166

low motion (gold standard) data being processed with TOPUP (Figure 2). Greater 167

improvement in similarity to the low motion data was observed in DLPFC and occip- 168

ital cortex (Figure 2a,b) compared to SCAN (Figure 2c). We observed that the mean 169

correlation between high-motion MEDIC-corrected seed maps and low-motion seed 170

maps was R = 0.35 (SD: 0.16). In contrast, the mean correlation between high-motion 171

TOPUP-corrected seed maps and low-motion data was R = 0.32 (SD: 0.15). Using a 172

two-tailed paired t-test, we found this difference to be statistically significant (two- 173

tailed paired t = 64.13; p < 0.001; df = 59411), indicating that MEDIC corrected 174

data is more similar to low motion corrected data and has greater robustness to head 175

motion. 176

2.3 MEDIC dynamic distortion correction improves functional 177

connectivity in pediatric populations 178

Uncorrected geometric distortion introduces participant-to-participant variability in 179

RSFC structure. We reasoned that improved distortion correction would produce indi- 180

vidual RSFC estimates that align more closely with a group average. To accomplish 181

this, we compared MEDIC and TOPUP distortion-corrected FC maps to gold- 182

standard group-averaged data, processed with TOPUP (ABCD Study; N = 3,928) [17]. 183

We used our Adolescent dataset containing repeated-sampling precision ME-fMRI 184

data from 21 participants (9-12 years old, 8M, 13F), with a total of 185 runs. These 185

ME-fMRI data were preprocessed with both MEDIC and TOPUP for resting-state 186

functional connectivity analyses. 187
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Fig. 3 Comparison of dynamic (MEDIC) and static (TOPUP) distortion correction against large-

sample group-averaged data. (a) Resting-state functional connectivity maps from a single scan (~16

minutes) in the Adolescent dataset (N = 185). A seed placed in the occipital cortex (primary visual)

is indicated by a black dot. Seed maps are displayed for data corrected using MEDIC (middle) and

TOPUP (right) and compared to a functional connectivity map computed from the ABCD group (N

= 3,928) average (left). Seed maps are thresholded to only display connectivity values above |r| > 0.3

for easier visualization. (b) Mean correlation of each scan from the Adolescent dataset to the ABCD

group average. Each dot represents the mean similarity of a single scan (~10-16 min) of the Adolescent

dataset to the ABCD group average. The y-axis represents the similarity to the ABCD group average

using MEDIC correction while the x-axis represents the similarity for the TOPUP corrected version

of the same data. The unity line represents the case where the MEDIC and TOPUP corrections

achieved the same similarity to the group-averaged standard. Points that are orange and above the

unity line indicate MEDIC corrected data that were on average more similar to the ABCD group

average than TOPUP corrected data. Blue dots that are below the unity line indicate the opposite.

(c) T-statistic map representing the spatial distribution of similarity to the ABCD group average.

Each vertex on the surface represents a t-statistic value, estimated using a two-tailed paired t-test

across all 185 scans of the Adolescent dataset between MEDIC and TOPUP correction. Warmer (red)

colors indicated that MEDIC correction had higher similarity to the ABCD group average compared

to TOPUP for that vertex, while cooler (blue) colors indicate the opposite.
10
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Seeds maps from both MEDIC and TOPUP processed data were compared to 188

the ABCD group-averaged data (Figure 3a; left). In the occipital cortex, the TOPUP 189

corrected data showed correlations not observed in the ABCD group (Figure 3a, right: 190

seed correlation to group-averaged data r = 0.04) that were removed by reprocessing 191

the identical data with MEDIC (Figure 3a, middle: seed correlation to group-averaged 192

data r = 0.44) (Squared Error: MEDIC = 0.03 (SD: 0.07), TOPUP = 0.07 (SD: 0.10); 193

two-tailed paired t = -84.6; p < 0.001; df = 59411). 194

To quantify the benefits of dynamic distortion correction with MEDIC across 195

the entire Adolescent dataset, cortical seed maps at every vertex for each scan were 196

compared to the corresponding group-averaged standard map (ABCD) through spa- 197

tial correlations. These spatial correlations were then averaged across all vertices 198

(Figure 3b; y-axis). The same assessment was done with TOPUP (Figure 3b; x-axis). 199

MEDIC corrected data were overall more similar to the ABCD group average com- 200

pared to TOPUP corrected data (MEDIC: 147; TOPUP: 38; two-tailed paired t = 201

9.37; p < 0.001; df = 184). 202

Finally, we sought to understand the regions in which MEDIC improved distor- 203

tion correction. We examined the spatial pattern of distortion correction differences 204

by doing a vertex-wise paired t-test to generate a vertex-wise t-statistic whole-brain 205

map showing those regions where MEDIC was more similar to the group-averaged 206

data (Figure 3c; hot colors). A clustering based multiple comparisons correction was 207

applied to correct to a significance level of 0.05 (uncorrected p-value 0.01) and leaving 208

only statistically significant clusters. This whole-brain map of similarity to the group 209

average revealed that the benefits of using MEDIC dynamic distortion correction were 210

greatest in the medial prefrontal and occipital cortex (Figure 3c). 211
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2.4 MEDIC frame-wise distortion correction produces212

superior anatomical alignment213

One goal of distortion correction is to improve co-registration of the fMRI to the214

anatomical data. Therefore, we assessed alignment accuracy by using the gray and215

white matter surfaces generated from anatomical segmentations [18]. When distortion216

correction is optimal, the gray and white matter surfaces obtained from anatomical217

data should also delineate the gray and white matter voxels in functional data on218

both the cortical and cerebellar surfaces. For this assessment, data from three separate219

SIEMENS Prisma MRI scanners at three different institutions: Washington University220

in St. Louis (WashU, selected participant from the Adolescent dataset), University221

of Minnesota (UMinn), and University of Pennsylvania (Penn) were processed and222

distortion corrected using MEDIC and TOPUP. We used participants from three223

different scanning sites to eliminate scanner-specific effects in the comparison between224

MEDIC and TOPUP anatomical alignment. Gray and white matter surfaces produced225

by anatomical segmentations from Freesurfer 7.3.2 [19] were overlaid on the averaged,226

atlas-aligned, distortion corrected functional volumes.227
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Fig. 4 Comparisons of anatomical surface alignment after dynamic (MEDIC) and static (TOPUP)

distortion correction. Gray and white matter boundaries (blue and green outlines respectively for

cortex; fuchsia and teal outlines respectively for cerebellum) were derived from freesurfer anatomical

segmentations. Good alignment occurs when segmentation surfaces correctly delineate gray and white

matter boundaries of the underlying functional data. Each column shows ME-fMRI data obtained

from three different scanning sites: (a) WashU (selected participant from Adolescent dataset), (b)

UMinn and (c) Penn. The top row shows the difference in field maps between MEDIC and TOPUP

(MEDIC - TOPUP). The colorbar denotes the magnitude of these differences, where warmer colors

indicate TOPUP field maps had a lower B0 frequency and have a displacement that is more anterior

compared to MEDIC for a particular voxel. The middle and bottom rows show anatomical surface

overlays on the averaged, atlas-aligned ME-fMRI data. Red arrows indicate areas that MEDIC cor-

rected data was more saliently aligned to the anatomical data compared to TOPUP corrected data.
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Field map differences between MEDIC and TOPUP were found to occur along the228

slice-encoding direction for all participants (Figure 4). In regions with large MEDIC-229

TOPUP distortion differences (Figure 4; top row), we hypothesized that we would230

also exhibit observable differences in registration to anatomy. This appeared to be the231

case; and further, in all of these regions, the MEDIC image was better aligned to the232

anatomy than the TOPUP image.233

In the WashU dataset (Figure 4a), the most prominent difference was observed234

in the cerebellum. In the TOPUP corrected data the inferior cerebellum was shifted235

approximately 3 mm anteriorly compared to the anatomical segmentation reference.236

MEDIC corrected data closely aligned with the cerebellar anatomy, suggesting a higher237

efficacy for cerebellar alignment. For the UMinn dataset (Figure 4b), we identified238

discrepancies in the dorsal cerebral cortex. The sulci in the TOPUP corrected images239

were shifted 2-3 mm anteriorly relative to the anatomical reference. In contrast, the240

MEDIC corrected data showed a good agreement with the cortical anatomy. Finally,241

in the Penn dataset (Figure 4c), a distortion profile similar to that of the UMinn242

data was observed. Specifically, the greatest differences appeared in the dorsal cortical243

region. The TOPUP corrected data displayed a 1-2 mm anterior shift in cortical244

structures relative to the anatomical reference. Meanwhile, the MEDIC corrected data245

maintained good alignment with the cortical anatomy.246

2.5 MEDIC distortion correction is superior on local and247

global anatomical alignment metrics248

To quantify anatomical alignment performance for MEDIC and TOPUP, we com-249

puted established local and global alignment metrics [18] between distortion corrected250

functional data and their corresponding T1w and T2w anatomical data (full statisti-251

cal tables for each alignment metric are given in Supplemental Table 2). We computed252
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all alignment metrics for the Adolescent dataset across 185 scans from 21 participants 253

in both MEDIC and TOPUP corrected data. 254

Fig. 5 Spotlight assessment of local similarity between distortion corrected functional and T1w/T2w

anatomical data. T-statistic maps from local R2 values were computed using a 3 voxel radius “spot-

light” moving across the entire image. (a) shows the t-statistic between MEDIC and TOPUP for

each R2 spotlight between the functional image and the T1w anatomical image, while (b) shows the

t-statistic between MEDIC and TOPUP for each R2 spotlight between the functional image and the

T2w anatomical image. Warmer colors indicate MEDIC corrected data had higher local similarity to

anatomy compared to TOPUP corrected data.

To assess local image correspondence, we computed the squared correlation (R2) 255

within a “spotlight”, a 3 voxel radius sphere window, between each of T1w and T2w 256

anatomical and the reference functional image. Two tailed paired t-tests were com- 257

puted for each voxel across all functional data scans in the Adolescent dataset (N 258

= 185) to determine which distortion correction strategy was more similar to the 259

anatomy at a local spotlight. Clustering based multiple comparisons correction was 260

applied to correct to a significance level of 0.05 (uncorrected p-value 0.01). Higher 261

t-statistic values indicated MEDIC was more similar to the anatomical image than 262
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TOPUP (Figure 5). MEDIC distortion corrected data had higher local similarity to263

the anatomical data than TOPUP distortion corrected data in gray matter. Areas264

where TOPUP performed better were restricted to areas of white matter and CSF,265

particularly in white matter areas adjacent to the lateral ventricle.266
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Fig. 6 Anatomical alignment metrics comparing MEDIC and TOPUP distortion correction meth-

ods. Distortion corrected functional images from each distortion correction method were compared

against each T1w/T2w anatomical image for each alignment measure, where bar plots for each metric

are displayed. Each bar plot represents the distribution of each anatomical alignment metric on each

scan of the Adolescent dataset (N = 185). Orange bars indicate data corrected with MEDIC, while

blue bars indicate data corrected with TOPUP. Bolded labels indicate that the alignment metric was

statistically significant in favor of the method. (a,d) Spatial mean R2 of local spotlight metric for both

T1w and T2w images (see also Figure 5). Higher values indicate that a scan had, on average, higher

local similarity to the anatomical images. Global alignment metrics such as (b,f) R2, (c,g) correlation

of the gradient magnitude, and (d,h) normalized mutual information assess global correspondence of

the distortion corrected functional data to T1w and T2w anatomical images [18]. Higher values indi-

cate greater global image similarity to the anatomical image. (i,j,k,l) Segmentation metrics assessing

accuracy of freesurfer based tissue segmentation on each functional image. Higher AUC values indi-

cate that the anatomical segmentation was able to better discriminate between tissue types.
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Further quantifying the local similarity, we computed the mean of R2 values267

across all spotlights for each scan (Figure 6a). MEDIC significantly outperformed268

static TOPUP correction in both the T1w R2 spotlight (MEDIC = 0.068 (SD: 0.007);269

TOPUP = 0.066 (SD: 0.008); two-tailed paired t = 7.133; p < 0.001; df = 184)270

and T2w R2 spotlight (MEDIC = 0.083 (SD: 0.010); TOPUP = 0.081 (SD: 0.011);271

two-tailed paired t = 6.124; p < 0.001; df = 184) analyses.272

To assess global image correspondence, we used multiple global metrics such as273

the squared correlation (R2), correlation of the gradient magnitude, and normalized274

mutual information (NMI) between each distortion corrected functional image and275

each T1w and T2w anatomical image (Figure 6b) [18]. MEDIC significantly outper-276

formed TOPUP on both T1w R2 (MEDIC = 0.063 (SD: 0.028); TOPUP = 0.060277

(SD: 0.028); two-tailed paired t = 11.284; p < 0.001; df = 184) and T2w R2 (MEDIC278

= 0.457 (SD: 0.053); TOPUP = 0.454 (SD: 0.056); two-tailed paired t = 2.729; p =279

0.007; df = 184) metrics, as well as the T1w gradient correlation (MEDIC = 0.43280

(SD: 0.028); TOPUP = 0.414 (SD: 0.036); two-tailed paired t = 11.727; p < 0.001;281

df = 184) metric. TOPUP slightly outperformed MEDIC on the T2w NMI (MEDIC282

= 0.836 (SD: 0.026); TOPUP = 0.838 (SD: 0.026); two-tailed paired t = -1.985; p =283

0.049; df = 184) metric.284

Finally, we examined alignment along specific tissue boundaries, delineated by the285

participant’s anatomical segmentation [18]. By overlaying the participant’s anatomical286

segmentation on the time-average fMRI data, and computing the Receiver Operat-287

ing Characteristic (ROC) curve, we determined how well each distortion correction288

method correctly delineated tissue types along specific boundaries by computing the289

area under the curve (AUC) value (Figure 6c). MEDIC significantly outperformed290

TOPUP correction in both the brain/exterior (MEDIC = 0.735 (SD: 0.035); TOPUP291

= 0.729 (SD: 0.034); two-tailed paired t=11.488; p < 0.001; df = 184) the gray/white292

matter (MEDIC = 0.735 (SD: 0.035); TOPUP = 0.729 (SD: 0.034); two-tailed paired293

18

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.28.568744doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.568744
http://creativecommons.org/licenses/by-nc-nd/4.0/


t=11.488; p < 0.001; df = 184), and cerebellum/exterior (MEDIC = 0.607 (SD: 294

0.041); TOPUP = 0.596 (SD: 0.049); two-tailed paired t=5.073; p < 0.001; df = 184) 295

boundaries. 296

3 Discussion 297

In fMRI studies, distortion of the source images is transmitted downstream, distorting 298

all derived research findings and clinical maps [1]. Previously state-of-the-art methods 299

employed static distortion correction techniques that depend on the acquisition of a 300

separate field map image [5, 6]. However, static field mapping is limiting and becomes 301

less accurate with larger head displacements during a scan [7, 9]. Given the massive 302

challenge of head motion, especially in children, the elderly, and patient populations 303

[10, 20–22], motion robust distortion correction is crucial for the success of fMRI 304

studies in these subpopulations. 305

Despite the conceptual superiority of dynamic field mapping approaches, prior 306

attempts have not been widely adopted by the neuroimaging community [23, 24]. This 307

is largely due to the lack of availability of multi-echo sequences, difficulty in imple- 308

mentation, and widely available open-source releases of said approaches. With the 309

recent growing interest and use of ME-fMRI for neuroimaging studies, our proposed 310

method, MEDIC, provides researchers the capability to address dynamic B0 changes 311

due to head motion. MEDIC is provided as a freely available open source tool, and 312

will further motivate the use of ME-fMRI in neuroimaging studies. 313

3.1 ME-fMRI enhances sensitivity, reliability, and signal 314

coverage in neuroimaging 315

ME-fMRI has many benefits over single-echo fMRI (SE-fMRI) and has been estab- 316

lished for at least a decade [13, 14, 25]. ME-fMRI allows for multiple echoes to be 317

analyzed separately or as an optimally combined time series, which exhibits higher 318
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SNR and improves statistical power of analyses in regions of high susceptibility. Mul-319

tiple echoes also allow for additional denoising capabilities through ME-ICA [13, 26]320

or denoising pipelines, such as tedana [27].321

Recent neuroimaging breakthroughs, such as the discovery of the somato-cognitive322

action network (SCAN), in the central sulcus, which was previously thought to be323

the exclusive domain of effector-specific primary motor cortex [16], utilized ME-fMRI324

data. ME-fMRI was also used to discover that the ventromedial prefrontal cortex325

(vmPFC), a region plagued by massive distortions, includes an enlarged salience326

network node in depression patients [28]. Similarly, ME-fMRI was able to identify327

individual-specific persistent brain changes after a single dose of the psychedelic328

psilocybin [29].329

Patient- (clinical) and individual-specific (research) precision functional mapping330

(PFM) [30] are specific applications of RSFC and task fMRI where ME-fMRI and by331

extension MEDIC are most valuable. Averaging fMRI data across individuals blurs332

spatial boundaries, effectively smoothing the underlying data [16, 30–37]. Therefore,333

group-averaging partially obscures the greater spatial precision obtainable with ME-334

fMRI and MEDIC. Hence, it may not be a coincidence that several strong proponents335

of ME-fMRI have been using it for PFM, through which greater confidence in spatial336

details can be directly converted into neuroscientific insights [15, 16, 28, 29, 38]. If337

the goal is individual-specific PFM, then ME-fMRI and MEDIC improve SNR and338

distortion correction, with the minor cost of slightly longer data processing times339

and increase in TR. Furthermore, with MEDIC, field map scans can be eliminated340

from the scanning protocol, eliminating the risk that some field maps end up motion341

corrupted or lost altogether. 342
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3.2 MEDIC further boosts the capabilities of ME-fMRI 343

through dynamic field map correction 344

Head motion also impacts distortions by changing the spatial distribution of the B0 345

field inhomogeneity [7, 9]. Changes to the B0 magnetic field result when someone 346

rotates their head out of the slice plane (i.e. readout and phase encoding directions). 347

Traditional static field maps cannot account for these time-varying changes to the 348

field, since they only measure the B0 field at a single time point before or after a scan. 349

In addition, any head motion that occurs between the field map acquisition and the 350

fMRI scan will also reduce the accuracy of distortion correction due to localization 351

errors. 352

Computing the phase evolution across multiple echo times across a ME-fMRI 353

sequence allows one to compute a field map for each data frame, allowing for the 354

tracking of magnetic field (B0) inhomogeneities dynamically and as close to real-time 355

as possible. With MEDIC, this results in two main benefits. First, this allows MEDIC 356

to measure the B0 field at each TR, allowing for the measurement of any time-varying 357

changes to the field. Second, since MEDIC field maps are inherently co-registered to 358

the ME-fMRI data it is correcting, and eliminating any errors in co-registration that 359

may arise from separate field map acquisitions. 360

As a general observation, for every 1 degree of head rotation outside of the slice 361

plane, we estimated a maximum change in the B0 field of 5 Hz/0.3 mm in our data, 362

representing the maximum error in distortion correction one would obtain by using a 363

static field map. Therefore, any functional connectivity analysis done in the presence 364

of notable head motion would benefit from MEDIC dynamic distortion corrections. 365

In living participants, motion can never be fully eliminated, even when using external 366

devices such as head restraints to mitigate head motion [39] or sedation, which often is 367

prohibitive in studies. Infants, children, the elderly and patient populations typically368
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have the highest head motion [10, 20–22] and utilization of ME-fMRI and MEDIC369

will likely be most beneficial in these groups.370

3.3 MEDIC provides superior distortion correction due to371

self-reference372

MEDIC field maps generated correction results more similar to group-averaged data373

than those produced by the TOPUP method. Importantly, this occurred even though374

the group-averaged data had been distortion-corrected using TOPUP- a circumstance375

that one would assume would inherently be biased towards TOPUP’s performance.376

Notably, we observed greater correspondence between MEDIC and the group-averaged377

functional connectivity maps within the medial prefrontal cortex and the occipital378

regions. In addition, there were still large local distortions even after correction with379

TOPUP, particularly in the dorsal cortical surface and cerebellum.380

We attribute MEDIC’s superior distortion correction capabilities to the fact that381

MEDIC uses field maps sourced from the same data it is correcting. This “self-382

reference” property provides two main benefits: first, fluctuations in head motion may383

have led to differences in the measured field, which static field maps only measure at384

a single point in time, potentially causing inaccurate localization of B0 field inhomo-385

geneities and, consequently, less than ideal distortion correction. Second, a single time386

point static field map might not accurately estimate the B0 field inhomogeneity of387

the scan it is meant to correct, leading to suboptimal distortion correction. This can388

result from a mismatch in acquisition parameters from the fMRI data and the field389

map data, leading to differences in affected B0 inhomogeneity. In such cases, MEDIC390

based distortion correction is able to correct for additional off-resonance effects. 391
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3.4 On parameter selection in ME-fMRI and MEDIC 392

Despite the benefits of ME-fMRI, one drawback is the requisite increase in TR due to 393

the collection of additional echoes [25]. For single-echo fMRI acquisitions, echo times 394

are typically around ~30 ms (TE). In multi-echo, any additional echo after this time 395

represents the increase in TR over a single-echo acquisition. For example, for a 3-echo 396

acquisition with echo times of 15 ms, 30 ms, and 45 ms, would require an extra 15 397

ms per RF pulse compared to a single echo acquisition. This increase in TR can be 398

mitigated if one were to reduce the number of slices, at the cost of a smaller field of view 399

(FOV), or by increasing the parallel imaging acceleration factors, while maintaining 400

the same FOV. Acceleration techniques, including both in-plane undersampling and 401

multi-band (simultaneous multi-slice), are a must if one desires multiple echoes, a TR 402

of ~1 second and resolutions of 2.4 mm or smaller. Most recent ME fMRI sequences 403

seem to utilize 3-5 echoes with the second echo around ~30 ms [15, 40–43]. The 404

acquisition of higher spatial resolution images is additionally challenging with ME 405

fMRI as even more acceleration is required in order to acquire multiple echoes without 406

unacceptably long readout times and/or TRs. 407

The addition of MEDIC does not largely change these considerations. In our study, 408

relatively late echo times were used (TE1 = 14.2 ms, TE2 = 38.93 ms), but still found 409

to be effective at measuring phase and correcting distortion. The use of earlier echo 410

times may improve the performance of MEDIC even further, particularly in areas of 411

high susceptibility [44]. MEDIC only requires the use of two echoes to compute a field 412

map, which is under the typical acquisition of 3-5 echoes. However, in cases where users 413

may want to use larger echo spacings, the identifiability of the field map computation 414

may breakdown, preventing accurate field map estimations. In such cases, more echoes 415

may be preferred to obtain a unique solution.416
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3.5 MEDIC is computationally efficient and open-source417

Our open-source implementation of MEDIC is optimized, resulting in computational418

times comparable to TOPUP for an entire dataset. Overall, the computational time419

to estimate MEDIC field maps over an entire dataset is generally comparable to the420

processing time required by TOPUP in its field map estimation process. Computation421

can be further reduced by running MEDIC’s parallel algorithm on a computer with422

multiple cores.423

While previous methods of multi-echo dynamic distortion correction have424

been suggested [23, 24], lack of functioning open source implementations of425

such methods have impeded their adoption. We therefore release our imple-426

mentation of MEDIC as an open-source package, which can be found at427

https://github.com/vanandrew/warpkit. This package is a Python library that can428

be integrated in a variety of processing pipelines and existing neuroimaging tools with429

output formats into AFNI, FSL, and ANTs [45–47]. We hope that this will facilitate430

the adoption of MEDIC in the neuroimaging community.431

3.6 Multi-echo framewise distortion correction for motion432

robust fMRI433

MEDIC’s dynamic, frame-wise distortion correction, is not only conceptually supe-434

rior to static field-map approaches, but significantly improves the accuracy of fMRI435

maps, especially in the presence of head motion. MEDIC is easy-to-implement and436

use and despite computing a dynamic field map at each data frame, is no slower than437

previously standard static distortion correction (i.e., TOPUP). ME-fMRI is recently438

gaining popularity more rapidly, at least in part due to its benefits for patient- or439

individual-specific precision functional mapping (PFM) [30]. MEDIC’s dynamic dis-440

tortion correction capability provides another driving reason to acquire multi-echo441

data. For fMRI applications aiming to maximize spatial precision, such as PFM, or 442
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intervention and neuromodulation targeting with fMRI, MEDIC provides yet another 443

powerful reason to switch from single- to multi-echo.444
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4 Methods445

4.1 Multi-Echo DIstortion Correction (MEDIC)446

To obtain field maps at each frame of a ME-fMRI acquisition, phase at multiple echo447

times must be measured. The field map is the slope of the relationship between phase448

and echo time. Therefore, at a minimum, at least two echoes are needed to compute449

the phase accumulation over time, i.e. the field map.450

Computing the field map is complicated by several factors. First, the phase mea-451

sured at each echo time contains a constant offset, such that the phase at zero echo452

time is not zero. This is a result of the coil combination process during reconstruction453

of the phase images, which can result in a phase offset [48]. The second is the wrap-454

ping of the phase measurements, which bounds the domain of the measured phase455

between [−π, π] [49]. This is a result of the phase being a periodic function and is a456

common problem when measuring a signal’s phase information. Finally, the measured457

field map obtained from an ME-fMRI image is in the space of the distorted image,458

and must be transformed to the undistorted space to be used for distortion correction.459

4.1.1 The wrapped phase difference problem460

Consider a single frame of ME-fMRI data, where n echoes of phase and magnitude461

data are acquired at different echo times t1, t2, . . . , tn. Using the phase difference462

method [5, 49], the phase information of the ME-EPI data can be related to the B0463

field inhomogeneity by the following:464

∆ϕ = γ∆B0∆t (1)

where ∆ϕ is the phase difference between two echoes, γ is the gyromagnetic ratio,465

∆B0 is the B0 field inhomogeneity, and t is the echo time difference. For brevity, we 466
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denote the field map as f , which is defined as f = γ∆B0. When images acquired from 467

more than two echoes are available, Equation 1 generalizes to: 468



ϕ1(r⃗)

ϕ2(r⃗)

...

ϕn(r⃗)


= f(r⃗)



t1

t2
...

tn


(2)

where r⃗ is the spatial location for a given voxel, and n denotes the number of 469

echoes in the data. Solving Equation 2 for f amounts to solving N linear systems, 470

where N is the number of voxels in the image. 471

In practice, solving Equation 2 is complicated by two additional effects. The first is 472

that phase information acquired from the scanner is wrapped, such that phase values 473

beyond the range of [−π, π], are wrapped back into the other side of the interval. 474

Second, Equation 2 assumes that the phase accumulation at t=0 is zero, a fact which, 475

depending on the specifics of the coil-combine algorithm applied to the phase data, is 476

often not the case. The full model accounting for both of these effects is given by: 477



(Ω(ϕ1(r⃗)))
u

(Ω(ϕ2(r⃗)))
u

...

(Ω(ϕn(r⃗)))
u


= f(r⃗)



t1

t2
...

tn


+ ϕ0(r⃗) (3)

where Ω is a wrapping operator that, such that ϕwrapped
n = Ω(ϕn), the wrapped 478

phase, and (·)u is an unwrapping operator, such that ϕn = (Ω(ϕn))
u = ϕwrapped

n + 479

2πk for some integer k, and ϕ0 is the phase accumulation at t = 0. Note that the 480

wrapped phase ϕwrapped
n is what is measured off the scanner. With the addition of 481

phase wrapping and offset effects, Equation 3 is no longer a simple linear system when 482

trying to solve for f .483
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4.1.2 Phase offset correction and unwrapping484

Estimation and removal of the phase offset is accomplished using the MCPC-3D-S485

algorithm [48]. MCPC-3D-S estimates the phase offset by computing the unwrapped486

phase difference between the first and second echoes of the data, then estimating487

the phase offset by assuming linear phase accumulation between the first and second488

echoes. This is given by the following:489

ϕ0(r⃗) = Ω(ϕ1(r⃗))−
(

t1
t2 − t1

)
(Ω(ϕ2(r⃗))− Ω(ϕ1(r⃗)))

u mod 2π (4)

In the case of MCPC-3D-S, the ROMEO unwrapping algorithm is used to unwrap490

(Ω(ϕ2(r⃗)) − Ω(ϕ1(r⃗))) [49]. Once ϕ0 is computed, the effects of the phase offset can491

be removed from Equation 3 by subtracting ϕ0 from the phase at each echo time.492

Phase unwrapping is performed using the ROMEO algorithm [49]. Phase informa-493

tion at later echoes tend to suffer from phase wrapping more than phase information494

at earlier echoes due to larger amounts of phase accumulation. This can degrade the495

performance of phase unwrapping algorithms that only consider the phase unwrapping496

problem at each echo time independently. ROMEO is able to constrain the unwrapping497

solution across all echoes by modeling the linear phase accumulation across echoes.498

This provides more accurate phase unwrapping solutions over other phase unwrapping499

methods, but requires the removal of phase offsets prior to unwrapping.500

4.1.3 Temporal phase correction501

Once the phases of all frames in a single ME-fMRI scan are unwrapped. A temporal502

correction step is applied to ensure phase unwrapping consistency across frames. For503

each frame, the phase of the first echo is considered against every other frame in504

an ME-fMRI scan that has a similar correlation with their corresponding magnitude505

image. Within a group of frames with a correlational similarity of 0.98 or greater, 506
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the phase values are corrected by adding/subtracting the nearest 2π multiple that 507

minimizes the difference to the mean phase value of the group, given by: 508

ϕoffset
m,1 (r⃗) = 2π ·

⌊
ϕm,1(r⃗)− ϕm,1

2π

⌉
(5)

where m denotes the frame index of the EPI time series, ⌊⌉ denotes the rounding 509

operator, and ϕm,1(r⃗) is the mean phase value for the grouped first echo frames similar 510

to frame m. Temporal phase correction for subsequent echos is performed by linearly 511

projecting the expected phase values beyond the previous echos: 512

ϕoffset
m,n (r⃗) = 2π ·

⌊
1

2π
·

(
ϕm,n(r⃗)− tn ·

n−1∑
i=1

ϕm,i(r⃗)ti∑n−1
j=1 t2j

)⌉
(6)

where n denotes the index of any echo after the first echo, and t is the echo time 513

for the associated echo. 514

4.1.4 Weighted field map computation 515

Field map estimation is accomplished with a weighted linear regression model. Since 516

signal decay increases with echo time, SNR at later echoes tends to be lower than 517

at earlier echoes, especially in areas of high susceptibility. To reduce the influence of 518

voxels with low signal on the field map estimation, we weight by the squared magnitude 519

of the signal at each echo time. Solving for Equation 2 then becomes a weighted least 520

squares problem: 521

Wϕ(r⃗) = Wf(r⃗)t (7)

where W is a diagonal weight matrix containing the magnitude of the signal at 522

each echo time, ϕ(r⃗) is the vector of phase values at each echo time for each voxel, 523

and t is the vector of echo times. Equation 7 is computed for each frame to yield a 524

field map time series corresponding to each frame of the ME-fMRI time series.525

29

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.28.568744doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.568744
http://creativecommons.org/licenses/by-nc-nd/4.0/


4.1.5 Low rank approximation526

To reduce the effects of temporal noise components in the field maps, we employ a527

low rank approximation approach. This step is vital for removing large field changes528

along the borders of the brain, which tend to contain spurious changes in the field529

map due to a lack of signal or high measurement noise. The low rank approximation530

problem can be formulated as follows:531

min
f̂

∥∥∥f − f̂
∥∥∥
2
subject to rank(f̂) ≤ n (8)

where f is the field map time series, reshaped as an N ×T matrix (where N is the532

voxel dimension and T is the time dimension), f̂ is the low rank approximation of f ,533

and n is the rank of the approximation. The solution to Equation 8 is given by the534

Eckart–Young–Mirsky theorem [50], which is simply the n-truncated singular value535

decomposition of f :536

f̂ = UΣnV
T (9)

where U and V are the left and right singular vectors of f , respectively, and Σn537

is the diagonal matrix of the first n singular values of f . For the solution estimated538

from Equation 9 in our results, we used n = 10.539

4.1.6 Displacement Field Inversion540

Finally, to obtain the final field map in the undistorted space, each frame of the field541

map time series is converted to a displacement field using the readout time and voxel542

size of the data. This displacement field is then inverted to the nearest diffeomorphic543

inverse to obtain the final field map in the undistorted space. Displacement field544

inversion was performed using the InvertDisplacementFieldImageFilter of the ITK545

library [51]. 546
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4.2 Data Acquisition 547

4.2.1 Head motion dataset 548

Head motion data was collected on a single adult participant to assess MEDIC’s 549

capability in measuring and correcting B0 field changes due to head movement. Par- 550

ticipant was asked to rotate their head along each cardinal axis of the scanner, while 551

3 TOPUP spin-echo field maps (TR: 8 s, TE: 66 ms, 72 Slices, FOV: 110x110, Voxel 552

Size: 2.0mm) pairs and magnitude/phase ME-fMRI data (TR: 1.761 s, TEs: 14.2, 553

38.93, 63.66, 88.39, 113.12 ms, 72 Slices, FOV: 110x110, Voxel Size: 2.0 mm, Multi- 554

Band: 6, iPAT: 2) were collected using a 3T whole-body scanner (Prisma, Siemens 555

Healthcare). For each rotated head position, ~3 minutes of ME-fMRI data was col- 556

lected. To serve as a reference for highly precise resting-state functional connectivity 557

data, ~150 minutes of additional ME-fMRI data was collected over 4 scanning ses- 558

sions. For anatomical images, T1w (Multi-echo MPRAGE, TR: 2.5 s, TEs: 1.81, 3.6, 559

5.39, 7.18 ms, 208 Slices, FOV: 300x300, Voxel Size: 0.8 mm, Bandwidth: 745 Hz/px) 560

and T2w (T2 SPACE, TR: 3.2, TE: 565 ms, 176 Slices, Turbo Factor: 190, FOV: 561

256x256, Voxel Size: 1 mm, Bandwidth: 240 Hz/px) were collected. 562

4.2.2 Adolescent dataset 563

A dataset with 21 participants was acquired to assess MEDIC’s distortion correction 564

performance on a group level (ages: 9-12; 8M, 13F; 15 Control, 1 ASD, 6 ADHD). 565

TOPUP spin-echo field maps (TR: 8 s, TE: 66 ms, 72 Slices, FOV: 110x110, Voxel 566

Size: 2.0mm) and magnitude/phase ME-fMRI data (TR: 1.761 s, TEs: 14.2, 38.93, 567

63.66, 88.39, 113.12 ms, 72 Slices, FOV: 110x110, Voxel Size: 2.0 mm, Multi-Band: 6, 568

iPAT: 2) was collected using a 3T whole-body scanner (Prisma, Siemens Healthcare). 569

For each participant, three scans of ME-fMRI data were collected (2x ~16 minutes, 1x 570

~10 minutes) across 2-5 sessions. For anatomical images, T1w (MPRAGE, TR: 2.5 s, 571

TEs: 2.9 ms, 176 Slices, FOV: 256x256, Voxel Size: 1.0 mm, Bandwidth: 240 Hz/px)572
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and T2w (T2 SPACE, TR: 3.2, TE: 565 ms, 176 Slices, Turbo Factor: 200, FOV:573

256x256, Voxel Size: 1 mm, Bandwidth: 4882 Hz/px) images were also collected. Real574

time motion monitoring was used during all acquisitions [52].575

4.2.3 UMinn dataset576

A single adult participant (age: 25) with TOPUP spin-echo field maps (TR: 8 s, TE:577

66 ms, 72 Slices, FOV: 110x110, Voxel Size: 2.0mm) and magnitude/phase ME-fMRI578

data (TR: 1.761 s, TEs: 14.2, 38.93, 63.66, 88.39, 113.12 ms, 72 Slices, FOV: 110x110,579

Voxel Size: 2.0 mm, Multi-Band: 6, iPAT: 2) was collected using a 3T whole-body580

scanner (Prisma, Siemens Healthcare). ME-fMRI data was collected over 4 sessions,581

with a total of ~174 minutes of resting-state data acquired. For anatomical images,582

T1w (MPRAGE, TR: 2.5 s, TEs: 2.9 ms, 176 Slices, FOV: 256x256, Voxel Size: 1.0583

mm, Bandwidth: 240 Hz/px) and T2w (T2 SPACE, TR: 3.2, TE: 565 ms, 176 Slices,584

Turbo Factor: 190, FOV: 256x256, Voxel Size: 1 mm, Bandwidth: 240 Hz/px) were585

collected.586

4.2.4 Penn dataset587

A single adult participant (age: 30) with TOPUP spin-echo field maps (TR: 8 s, TE:588

66 ms, 72 Slices, FOV: 110x110, Voxel Size: 2.0mm) and magnitude/phase ME-fMRI589

data (TR: 1.761 s, TEs: 14.2, 38.93, 63.66, 88.39, 113.12 ms, 72 Slices, FOV: 110x110,590

Voxel Size: 2.0 mm, Multi-Band: 6, iPAT: 2) was collected using a 3T whole-body591

scanner (Prisma, Siemens Healthcare). Two ~6 minute scans of resting-stage ME-fMRI592

data was collected. For anatomical images only a T1w (MPRAGE, TR: 2.5 s, TEs:593

2.9 ms, 176 Slices, FOV: 256x256, Voxel Size: 1.0 mm, Bandwidth: 240 Hz/px) image594

was collected. 595
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4.2.5 ABCD dataset 596

A large-scale group averaged resting-state functional connectivity map from the Ado- 597

lescent Brain Cognitive Development (ABCD) study was used to compare individual 598

functional connectivity to averaged group data. This group average map used strict 599

denoising (N = 3,928; >8 min; RSFC data post frame censoring at a filtered frame- 600

wise displacement <0.08 mm) to remove the effects of nuisance variables such as head 601

motion and respiration [17]. During ABCD data preprocessing, FSL TOPUP was used 602

for distortion correction. More information on ABCD dataset processing can be found 603

in [53]. 604

4.3 Processing pipeline 605

We compared MEDIC’s dynamic distortion correction to the gold-standard of static 606

distortion correction, FSL TOPUP [6]. For all comparisons, a common pipeline was 607

used where all processing steps were kept the same, with the exception of the distortion 608

correction method. For the MEDIC pipeline, field maps were computed and corrected 609

for each frame of the ME-fMRI data using MEDIC. For the TOPUP pipeline, field 610

maps were processed using FSL TOPUP [6], then coregistered to the ME-fMRI data 611

using 4dfp tools [54]. The same field map was then applied to each frame of the ME- 612

fMRI for distortion correction. Note that for the low motion dataset, only TOPUP 613

correction was used as a distortion correction method during preprocessing. 614

Both T1w and T2w anatomical data were processed by debiasing using FSL FAST 615

[46] before passing into Freesurfer for anatomical segmentation [19]. Anatomical data 616

was then aligned to the MNI152 atlas [55, 56] using 4dfp tools [54]. For ME-fMRI 617

data, slice time correction and motion correction using 4dfp tools. Bias field correction 618

of the ME-fMRI data was performed using N4 Bias field correction [47]. Coregistra- 619

tion of the functional data to the anatomical data via the T2w image was performed 620

using 4dfp tools [54]. The final atlas aligned functional data was computed using a one621
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step resampling of the concatenated transforms (motion correction, distortion correc-622

tion, functional to anatomical coregistration, anatomical to atlas coregistration) using623

FSL applywarp [46]. The ME-fMRI data was combined into an optimally weighted624

combined image prior to nuisance regression and mapping to the surface using Con-625

nectome Workbench [57]. Frame censoring was applied to remove the effects of head626

motion using a FD threshold of 0.08 after filtering for respiration [58].627

4.4 Code Availability628

The implementation for MEDIC can be found at629

https://github.com/vanandrew/warpkit. Code for the processing pipeline630

can be found at https://github.com/DosenbachGreene/processing_pipeline.631

Code for data analysis and figure generation can be found at632

https://github.com/vanandrew/medic_analysis.633
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7 Supplemental Material661

7.1 Rigid-body alignment parameters for head motion data. 662

Supplementary Table 1 Average (Std. Dev.) of alignment parameters for each head position

Task rx (deg) ry (deg) rz (deg) tx (mm) ty (mm) tz (mm)

Neutral -0.09 (0.04) -0.15 (0.08) -0.08 (0.09) -0.17 (0.13) -0.06 (0.04) 0.02 (0.07)
Rotate +z -1.54 (0.10) -1.47 (0.05) 14.96 (0.08) -2.26 (0.23) -0.69 (0.04) -2.94 (0.31)
Rotate -z 0.99 (0.07) -1.90 (0.08) -9.78 (0.05) -3.84 (0.05) -0.26 (0.04) -1.52 (0.09)
Rotate +x 10.64 (0.27) -2.510 (0.15) 0.85 (0.07) -0.98 (0.10) 4.93 (0.18) 3.78 (0.17)
Rotate -x -13.73 (0.24) -2.799 (0.07) -0.94 (0.16) -2.45 (0.25) -4.22 (0.07) 0.71 (0.14)
Rotate +y -1.38 (0.05) -10.79 (0.06) 21.44 (0.06) 2.72 (0.08) -2.15 (0.04) -5.35 (0.15)
Rotate -y 0.09 (0.09) 8.58 (0.22) -18.85 (0.12) -5.79 (0.13) -1.21 (0.04) -3.31 (0.07)
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7.2 Anatomical alignment metrics comparing MEDIC and 663

TOPUP distortion correction methods.664

Supplementary Table 2 Alignment metrics MEDIC vs. TOPUP

Metric MEDIC TOPUP t-statistic p-value df

T1w R2 Spotlight 0.068 (0.007) 0.066 (0.008) 7.133 <0.001 184
T2w R2 Spotlight 0.083 (0.010) 0.081 (0.011) 6.124 <0.001 184
T1w R2 0.063 (0.028) 0.060 (0.028) 11.284 <0.001 184
T2w R2 0.457 (0.053) 0.454 (0.056) 2.729 0.007 184
T1w Grad. Correlation 0.43 (0.028) 0.414 (0.036) 11.727 <0.001 184
T2w Grad. Correlation 0.637 (0.04) 0.638 (0.054) -0.371 0.711 184
T1w NMI 0.872 (0.029) 0.872 (0.029) -0.106 0.915 184
T2w NMI 0.836 (0.026) 0.838 (0.026) -1.985 0.049 184
Gray/White Matter AUC 0.692 (0.031) 0.686 (0.036) 6.598 <0.001 184
Brain/Exterior AUC 0.735 (0.035) 0.729 (0.034) 11.488 <0.001 184
Ventricles/White Matter AUC 0.829 (0.057) 0.829 (0.062) -0.058 0.954 184
Cerebellum/ Exterior AUC 0.607 (0.041) 0.596 (0.049) 5.073 <0.001 184
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7.3 TOPUP field map for high motion data 665

Supplemental Figure 1 TOPUP field map for high motion data. Spin-echo field maps (TR: 8 s,

TE: 66 ms, 72 Slices, FOV: 110x110, Voxel Size: 2.0mm) were collected prior to high motion data

collection to simulate a typical acquisition of a field map. Field map data was acquired when the

head was in the neutral position. Scans were subsequently passed into TOPUP for B0 field

estimation using TOPUP’s default settings. The same field map was applied to all frames for

correction, regardless of head position, after motion correction to a reference frame.
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7.4 MEDIC field maps can measure respiration induced B0 666

field changes 667

One well known phenomenon is the effect of respiration on the B0 field [59]. As 668

the participant inhales and exhales, the shifting of organs within the thoracic and 669

abdominal regions, coupled with alterations in the oxygenation levels of the breathed- 670

in gas, leads to global oscillations in the B0 field. These global oscillations, through 671

dynamic field mapping, can be measured by MEDIC field maps. We aimed to examine 672

whether respiration could be measured solely with a MEDIC dynamic field map, 673

through averaging of all voxels in the field map and high pass filtering the resultant 674

signal (4th order butterworth, 0.15 Hz cutoff frequency) to obtain an estimation of 675

the participant’s respiration signal.676
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Supplemental Figure 2 Comparison of respiration signal from respiratory belt against

respiration signal extracted from MEDIC field maps across 3 runs of the same participant. All data

was mean/std. dev. normalized before each analysis. (a) Power spectral density of signal from

respiratory belt and MEDIC field maps. Red spectral plot indicates spectral frequency content

collected from respiratory belt data from each run. Green and purple spectral plots indicate the

frequency content from the average field map time series before and after filtering with a high pass

filter for each run (butterworth filter; 4th order; cutoff frequency 0.15 Hz). (b) Signal from the

respiratory belt (red) and filtered signal (purple) from the MEDIC field across each run. R values

above each plot run indicates the correlation between the two signals.

MEDIC field maps were computed for a single participant with three runs of677

ME-EPI data with corresponding respiration belt data for comparison Supplemental678

Fig. 2. MEDIC field maps contain spectral frequency content in the 0.2 Hz to 0.3 Hz679

band, which generally corresponds to frequencies associated with respiration (~12 - 20680

breaths per minute). Filtering the MEDIC field map signal with a high pass filter (4th 681
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order butterworth, 0.15 Hz cutoff frequency) isolates these frequencies for comparison 682

to the respiration signal acquired from the respiratory belt. This filtered signal has a 683

high correlation to the respiratory belt signal across each run (Run 1: R = 0.834; Run 684

2: R = 0.747; Run 3: R = 0.830) indicating successful extraction of the respiration 685

signal from a MEDIC field map. 686

This capability offers a synchronized physiological monitoring feature that is inher- 687

ently time-locked to imaging data. As a result, MEDIC can provide either a redundant 688

or supplemental means of collecting respiration signals during scanning sessions. This 689

is especially crucial given the complexities and challenges of capturing respiration 690

data due to issues like respiratory belt clipping and/or malfunctions. Moreover, the 691

respiration signal used in MEDIC field maps may be used to improve current data 692

pre-processing and analysis methods, thereby enhancing data quality.693
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