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ABSTRACT

Objective: Localization of focal epilepsy is critical for surgical treatment of refractory seizures.  There 

remains a great need for non-invasive techniques to localize seizures for surgical decision-making. 

We investigate the use of deep learning using resting state functional MRI (RS-fMRI) to identify the 

hemisphere of seizure onset in temporal lobe epilepsy (TLE) patients.  

Methods: 2132 healthy controls and 32 pre-operative TLE patients were studied. All participants 

underwent structural MRI and RS-fMRI. Healthy control data was used to generate training samples 

for a 3D convolutional neural network (3DCNN). RS-fMRI was synthetically altered in randomly 

lateralized regions in the healthy control participants. The model was then trained to classify the 

hemisphere containing synthetic noise. Finally, the model was tested on TLE patients to assess its 

performance for detecting biological seizure-onset zones, and gradient-weighted class activation 

mapping (Grad-CAM) identified the strongest predictive regions.

Results: The 3DCNN classified healthy control hemispheres known to contain synthetic noise with 

96% accuracy, and TLE hemispheres clinically identified to be seizure onset zones with 90.6% 

accuracy. Grad-CAM identified a range of temporal, frontal, parietal, and subcortical regions that 

were strong anatomical predictors of the seizure onset zone, while the resting state networks which 

colocalized with Grad-CAM results included default mode, medial temporal, and dorsal attention 

networks. Lastly, in an analysis of a subset of patients with post-surgical outcomes, the 3DCNN 

leveraged a more focal set of regions to achieve classification in patients with Engel class > 1 

compared to Engel class 1. 

Significance: Non-invasive techniques capable of localizing the seizure-onset zone could improve 

pre-surgical planning in patients with intractable epilepsy. We have demonstrated the ability of deep 

learning to identify the correct hemisphere of the seizure onset zone in TLE patients using RS-fMRI A
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with high accuracy. This approach represents a novel technique of seizure lateralization that could 

improve preoperative surgical planning.

Key Points

 Deep learning was able to accurately classify the correct hemisphere of the seizure onset zone 

in TLE patients using RS-fMRI.

 The strongest predictive anatomical regions included temporal, frontal, parietal, and insular 

regions. 

 The strongest predictive resting state networks included default mode, medial temporal, and 

dorsal attention networks.

 Engel class 1 showed more diffuse contributions across the brain to the lateralization score 

compared to Engel class>1.

Key words: Machine learning; epilepsy; resting state functional connectivity

Introduction

Epilepsy is one of the most common neurologic disorders, affecting 1.5-2.3 million people in the U.S. 

and 50 million people worldwide1. Epilepsy not fully responsive to antiepileptic medications, known 

as intractable epilepsy, leads to substantial morbidity, mortality, and socioeconomic burden2. Non-

invasive methods of lateralization or localization of the seizure onset zone are crucial for diagnosis, 

disease stratification, and of critical interest in a preoperative workup for epilepsy surgery. 

Conventional non-invasive methods of localization, beyond analysis of seizure semiology, typically 

include long-duration scalp video-assisted electroencephalography (video-EEG), high resolution 

structural magnetic resonance imaging (MRI), positron emission tomography (PET), single photon A
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emission computed tomography (SPECT), magnetoencephalography (MEG), and neuropsychological 

assessment, as well as other less commonly used modalities. Consensus on seizure localization, 

especially for the purposes of presurgical assessment, is typically achieved after considering all 

available diagnostic information obtained via these techniques. However, non-invasive methods are 

not always concordant or able to provide definitive seizure-onset zone localization. In this situation, 

more invasive approaches, such as intracranial EEG, are required prior to proceeding to a definitive 

surgical treatment, such as a resection of ablation of the cerebral cortex. Non-invasive techniques that 

can localize the seizure-onset zone without the need for more invasive methods thus remain in great 

need and could significantly improve surgical decision-making.

Machine learning (ML) refers to a form of artificial intelligence that leverages exposure to data rather 

than explicit instructions to develop models. Broadly speaking, machine learning algorithms compute 

a mapping function that isolates and selects features of a given input and maps them to an output 

prediction, with the mapping function being progressively updated and improved with greater 

exposure to input data. In the case of deep learning, the algorithm is organized in a neural network 

composed of layers of nodes, with multiple layers between the input and output layers, or hidden 

layers, that perform feature selection and mapping automatically by updating node weights as the 

network is exposed to data. 

ML algorithms have been applied to multiple domains, including neurophysiology of healthy controls 

and patients with neurologic disorders3. In the case of epilepsy, most applications of machine learning 

have focused on seizure detection, prognosis, or automated analysis and/or recognition of 

neuroimaging data. Some approaches, for instance, have developed classifiers for heterotopias or 

focal cortical dysplasias4,5, in one instance leading to prediction of seizure freedom6. In a very recent 

study, for instance, Lariviere and colleagues used a supervised pattern learning algorithm to predict 

surgical outcome by analyzing resting state fMRI connectivity distance in patients with intractable 

focal epilepsy7. Gleichgerrcht et al. was also able to predict surgical outcome after epilepsy surgery 

using deep learning with a high positive predictive value8. An attractive feature of machine learning 

algorithms is that they can potentially extract hidden properties of a data set. In a study by Pardoe and A
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colleagues, a machine learning network was trained on a group of structural brain MRIs of healthy 

controls to estimate biological age9. When applied to brain MRIs of epilepsy patients the network 

yielded estimates that were older than the actual biological age of the patients, suggesting that the 

network was able to capture the premature aging effect of the disease.  

There have been few attempts at using machine learning methods to lateralize or localize seizure 

onset. They have primarily been applied to conventional sources of non-invasive data typically 

available as part of a presurgical epilepsy workup, such as structural MRI, PET, or SPECT10–13. 

Resting state functional MRI (fMRI) connectivity is typically used only for localization of eloquent 

cortex in preoperative surgical planning in epilepsy, but has shown promise in lateralizing seizure foci 

in patients with intractable focal epilepsy at the group level14. Multiple papers have attempted to use 

functional connectivity to localize seizure foci15–18, although as of now none of these methods have 

gained wide clinical acceptance. A technique that lateralizes the seizure-onset zone at the individual 

patient level using resting state fMRI could be of significant value to the goals of a presurgical 

workup. Machine learning approaches are beginning to be applied to the analysis of resting state 

fMRI connectivity for the purpose of seizure onset localization. Since the literature describes 

decreased connectivity in patients with epilepsy as compared to controls19, we hypothesized that 

by augmenting functional connectivity data in normal controls with different types of noise we 

could train a ML algorithm to identify the lateralization of seizure onset in patients with 

temporal lobe epilepsy (TLE).   

In this study, we developed a novel, deep learning approach to seizure onset lateralization that applies 

a three-dimensional convolutional neural network (3DCNN) to preoperative resting state functional 

MRI (RS-fMRI) data in patients with temporal lobe epilepsy. The neural network was trained on RS-

fMRI data from healthy controls with superimposed noise and/or random permutations as ground 

truth. When applied to RS-fMRI data from a well-characterized set of TLE patients14, the network 

achieved a preoperative seizure onset zone lateralization accuracy of 90.1%. Further, gradient-

weighted class activation mapping (Grad-CAM) applied to the 3DCNN identified both structural 

regions and functional networks which were the strongest predictors of the seizure onset zone. Lastly, A
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an analysis of a subset of patients with post-surgical outcomes identified differences between Engel 

class 1 and Engel class > 1 outcomes.

Materials and Methods

Participants

Thirty-two patients with temporal lobe epilepsy (20 with left TLE, 12 with right TLE) were 

retrospectively and consecutively enrolled through the Washington University Adult Epilepsy 

Center. This data has been well characterized in previous studies14. Patients were screened for 

enrollment based on reported clinical semiology of their seizures and confirmed unilateral 

temporal lobe epilepsy by video-EEG monitoring. Clinical semiology for study inclusion 

included auras of epigastric rising, experiential phenomena (most commonly fear) and 

gustatory or olfactory sensations20. Patients with auras suggestive of lateral temporal onset 

seizures, including auditory hallucinations, visual misperceptions, or language disturbance, 

were excluded from the study group. Video EEG monitoring recorded all subjects having focal 

impaired awareness seizures. Ictal scalp EEG patterns showed focal anterior temporal 

distribution slowing at either EEG seizure onset, or showed progression to rhythmic focal 

slowing over the involved region in most seizures. Exclusion criteria included clinical or 

electrographic evidence of bitemporal or extratemporal seizures, developmental anomalies, 

cortical malformations or other focal lesion on structural MRI, age < 18 years, inability to 

perform MRI, suspected pregnancy, history of substance or alcohol abuse, and non-proficiency 

in the English language. A subset of the patients had MRI evidence of medial temporal sclerosis 

(MTS) and/or hippocampal atrophy assessed via MRI image properties. No patients showed 

bilateral pathologic changes.

RS-fMRI data from healthy control participants (N=2132) was acquired through ongoing research 

studies conducted at WUSTL, as well as the Brain Genomics Superstruct Project21. Normative 

cognitive status for the control participants was confirmed by a structured clinical rating scale (i.e., 
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the Clinical Dementia Rating Scale22) or online cognitive test protocol21. The appropriate Institutional 

Review Boards approved all studies, and all participants provided written informed consent. 

MRI Acquisition and Processing

Images from TLE participants were acquired with a Siemens MAGNETOM Trio 3 T scanner 

(Erlangen, Germany). A high-resolution (0.42 × 0.42 × 0.9 mm) T1-weighted magnetization-prepared 

rapid gradient echo (MPRAGE) (TI 800 ms, TE 3.29 ms) structural scan was obtained for each 

participant for the purpose of anatomic segmentation, registration to the functional images, and atlas 

transformation. Two BOLD resting state functional scans (echoplanar, TR 2200 ms, TE 27 ms, flip 

angle 90 deg, 4x4x4 mm voxels) were also acquired for each participant. Each of the two functional 

runs was comprised of 164 volumes (approximately 6 minutes in duration). Study participants were 

asked to relax while fixating on a cross hair. fMRI BOLD data was pre-processed in several steps 

using standard methods23. Motion was corrected with rigid-body realignment. Spurious variance was 

minimized by removal of the linear trend, temporal low-pass filtering, spatial smoothing, and 

regression of nuisance parameters (head-motion, white matter, ventricular and global signals) and 

their temporal derivatives24. 

Imaging from healthy controls was performed on 3T Siemens MR Scanners (models varied between 

studies) equipped with a standard 12-channel head coil. A high-resolution, three-dimensional, sagittal, 

T1-weighted, magnetization-prepared rapid gradient echo (MPRAGE) scan was acquired (echo time 

[TE] = 16 ms, repetition time [TR] = 2,400 ms, inversion time = 1,000 ms, flip angle = 8°, 256 × 256 

acquisition matrix, 1 mm3 voxels). RS-fMRI scans were collected using an echo planar sequence 

(voxel size = 3-4 mm3, TR = 2200-3000 ms, FA = 80°-90°). Each participant had approximately 14 

min of RS-fMRI data. Pre-processing methods was identical to those described above.

Analysis

A three-dimensional convolutional neural network (3DCNN) with a densely connected architecture25 

was used for our analysis and was trained to classify which hemisphere contained the seizure onset 

zone. The 3DCNN consisted of 72 layers and 55,680,450 learnable parameters. Layers within the A
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network included 3x3x3 and 1x1x1 convolutions (stride 1), batch normalization, swish activation, 

2x2x2 max pooling (stride 2), concatenations, and dropout (50%). Input to the model was a 

48x64x48x180 BOLD time series (height, width, depth, time). 200,000 training instances were 

generated for each hemisphere. A minibatch size of four was used during training, and minibatches 

were shuffled after every full epoch. The model learn rate was initialized at .01 and was reduced by 

50% at every epoch. Twenty percent of the generated training data was reserved for validation. 

Validation occurred at the completion of every epoch, and training terminated if the accuracy did not 

improve after three validations. The output of the model represented the probability of the training 

sample having a seizure onset zone located in each hemisphere of the brain. All analysis and models 

were implemented in Matlab R2020b (www.mathworks.com).

Training data was generated by augmenting data from healthy control participants. Specifically, to 

generate any single instance of training data, a single seed voxel was selected at random in the brain. 

Then, 3 integer values ranging from 0 to 3 were generated at random that would represent the height, 

width, and depth of the 3-dimensional region of the simulated seizure onset zone in the brain centered 

around the seed voxel (i.e. if the random integers chosen were [2, 1, 3], the dimension of the seizure 

onset zone would be 5x3x7). Next, any voxel contained within the simulated seizure onset zone 

would have its time series modified by various means to create anomalous data in that region of the 

brain. Numerous methods were uniformly used to modify the time series, including adding 1) 

normally distributed noise, 2) uniformly distributed noise, 3) power-law noise, 4) Brownian noise, 5) 

noise generated by a Levy walk process, 6) randomly permuting the time series, 7) replacing the time 

series with cosine waves with various periods, or 8) replacing the whole time series with constant 

values. The choice of using multiple noise models is due to the fact that 1) using a single noise 

model would lead to the 3DCNN being overfit to that specific noise model, and 2) we do not 

know what an epileptic “signature” looks like in BOLD data, and are therefore unable to choose 

a single noise model which is most reflective of epilepsy (assuming such a noise model exist). 

Therefore, the use of multiple noise models leads to a nonspecific anomaly detector. Each voxel 

within the simulated seizure onset zone was modified independently, and every voxel in a sample was 

perturbed with the same noise model. This process was repeated for the healthy control data until A
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there were 200,000 training samples in each hemisphere. Notably, only modified heathy control data 

was used to train the 3DCNN. After training was complete, the model was then tested on TLE data. 

Figure 1 shows an example of noise injection on BOLD data from a healthy control participant.  

Features used by the 3DCNN to appropriately classify TLE data were identified using gradient-

weighted class activation mapping (Grad-CAM)26. Grad-CAM determines the important features in 

data by evaluating the gradients of the target within the 3DCNN. Specifically, Grad-CAM computes 

the gradient with respect to the class score and the convolutional features of a specified layer. After 

spatially pooling the gradients, the weights are used to combine the activation maps and determine 

which features are most relevant to the classification goal. The final concatenation layer of the 

3DCNN was used to extract features with Grad-CAM. Voxelwise Grad-CAM weights were averaged 

based on Freesurfer27 defined ROIs to identify the anatomical regions that were typically of greatest 

importance for classification. Grad-CAM weights were also averaged across predefined ROIs28 to 

identify which resting state networks (RSNs) contributed most to the classification. The RSNs 

evaluated included dorsal somatomotor (SMD), ventral somatomotor (SMV), cinguloopercular 

(CON), auditory (AUD), default mode (DMN), parietal memory (PMN), visual (VIS), frontoparietal 

(FPN), salience (SAL), ventral attention (VAN), dorsal attention (DAN), medial temporal (MTL), 

basal ganglia (BGA), and thalamus (THA). Averaging Grad-CAM weights based on both 

anatomical and RSN parcellations was performed in order to summarize the voxelwise results 

produced by Grad-CAM, and place our results in the context of past research.

Results

Participant demographics

Demographics for TLE and healthy control participants are presented in table 1. 

Model results 

The 3DCNN classified healthy control hemispheres known to contain synthetic noise with 96% 

accuracy. These results required 17 training epochs. Once training was complete, the model was then A
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tested on TLE data. These results can be seen in Supplemental Figure 1. The overall accuracy of the 

model on TLE patients was 90.6% (90% accuracy classifying left TLE and 91.7% accuracy 

classifying right TLE). 

Figure 2 shows the mean feature maps identified with Grad-CAM for left and right TLE. This figure 

demonstrates that the areas used for identification of the left versus right TLE are, as expected, more 

weighted towards the left versus right side respectively. However, identification of right TLE (RTLE) 

is more focused on information from the right temporal lobe as compared with the left TLE (LTLE) 

which is more diffusely spread beyond just the left temporal lobe, involving areas of the left > right 

frontal lobes (see Supplemental Figure 2 and 3). The asymmetry is also illustrated in Figure 3, which 

shows the average Grad-Cam weights based on anatomical parcellations. In RTLE, the strongest 

features were primarily localized to the middle and inferior temporal lobe. Comparatively, Grad-CAM 

weights in LTLE were less localized and covered more regions of the brain, including temporal, 

frontal, and subcortical (anterior cingulate, insula, entorhinal cortex) regions.. Asymmetry between 

the two sides is also seen in Figure 4, which shows the average Grad-CAM weights for individual 

resting state networks based on predefined ROIs. Overall, the highest average weights were seen in 

the default mode network, medial temporal network, and dorsal attention network. Lastly, a subset of 

LTLE patients with different post-surgical Engel outcomes were compared. Grad-CAM feature maps 

for four patients with Engel class 1 were averaged, and maps from 4 patients with Engel class >1 were 

averaged. Figure 5 depicts the results. The mean Grad-CAM map for Engel class > 1, i.e. with poorer 

postsurgical outcome, shows greater focality when compared to the more diffuse extent seen in Engel 

class 1 patients.

 

Discussion

In this study, we used a novel data augmentation methodology and a 3DCNN to classify the 

hemisphere containing the seizure onset zone in preoperative TLE patients with high accuracy 

(Supplemental Figure 1). This degree of accuracy is substantial and if confirmed in larger studies, A
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could be sufficient for clinical use and could potentially improve treatment outcomes for patients with 

TLE. Further, features extracted from the 3DCNN were used to identify both anatomical regions and 

RSNs which contributed most to the classification. At the region level, temporal, frontal, parietal, and 

insular regions were identified as the strongest predictors, while at the level of resting state networks 

strongest predictors of lateralization included default mode, medial temporal, and dorsal attention 

networks (Figures 3 and 4). Lastly, in an analysis of a subset of patients with post-surgical outcomes, 

our model indicates that patients with poorer outcomes (Engel class >1) had a  more focal set of left 

regions affecting classification compared to patients with Engel class 1 outcomes (Figure 5), for 

whom classification leveraged a diffuse area across both hemispheres. 

Our analysis revealed notable differences when comparing left and right TLE (Figures 2-4). In LTLE, 

mean Grad-CAM maps showed strong contributions to the lateralization by numerous regions, 

including the medial occipitotemporal gyrus, frontal lobe, temporal lobe, and anterior cingulate cortex 

(ACC). In contrast, strong activations in RTLE were more localized, and primarily encompassed the 

temporal lobe and some parietal regions. The asymmetries seen in Figure 2 are also reflected in the 

numerical results presented in Figure 3. The more diffuse spread of Grad-CAM weights in the LTLE 

is clearly seen in comparison with the values in the RTLE patients, which are more focused in the 

right temporal lobe area. Past studies of TLE using multiple imaging modalities have revealed similar 

imbalances with respect to the effect of LTLE and RTLE in the brain29–32. Besson et al.33 compared 

LTLE, RTLE, and controls using diffusion weighted imaging. Their results showed a significant 

reduction in connectivity between LTLE patients and controls, while loss of connectivity in RTLE 

patients was less pronounced and restricted to fewer regions. Both these and our findings may at least 

in part reflect the commonly observed difference in semiology between temporal seizures that involve 

the dominant vs. non-dominant hemisphere, with the former typically leading to much greater ictal 

disruption of awareness and cognitive function34. The 3D-CNN analysis may thus have revealed a 

group-specific difference in extent of the epileptogenic network reflected in a typically observed 

clinical phenotype. 
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Similarly, differences between LTLE and RTLE were observed with regards to the contribution of 

different resting state networks to classification. In general, LTLE showed stronger contributions by 

most networks (Figure 4). Again, differences in left and RTLE at the resting state network level have 

also been observed in other work35. Haneef et al.30 showed LTLE had greater alterations in 

hippocampal networks when compared to RTLE. Their study also found no significant changes in 

frontal connectivity in RTLE patients. As seen in Figure 2, some of the largest differences seen in the 

Grad-CAM feature maps between LTLE and RTLE were observed in frontal regions, with 

orbitofrontal cortex contributing significantly to lateralization in LTLE patients but not in RTLE. 

These results are consistent with past research, which suggests that LTLE leads to more prominent 

frontal lobe dysfunction30. Haneef et al.36 also showed the DMN was more effected in LTLE 

compared to RTLE. In all, our results may reflect the commonly observed finding that LTLE appears 

to cause more extensive network impairment than RTLE, which may be of relevance for preoperative 

planning. 

The primary resting state networks associated with greater Grad-CAM feature weights (i.e. that were 

of greater impact on classification) included the DMN, DAN, and MTL networks in addition to 

subcortical regions, such as the BGA. The DMN spans a large portion of the brain and is most active 

when an individual is not engaged in goal-directed tasks28. The DMN has been implicated in 

numerous neurological disorders37, including epilepsy38,39. The literature is consistent in reporting 

decreases in DMN connectivity in patients with epilepsy19,40, although contralateral increase have 

been report41.  In TLE, alterations in the DMN have been associated with greater postsurgical memory 

decline42. However, the literature is inconsistent if  changes in the DMN due to TLE are dependent43 

or independent of duration of illness44. In direct opposition to the DMN, the DAN is most associated 

with task positive brain activity (primarily top-down, goal-directed attention processes)28. Studies 

have shown that TLE decreases functional connectivity in the DAN, and as a result, leads to poorer 

performance on cognitive test associated with top-down attention processes45,46. The MTL and basal 

ganglia encompass deep gray structures, including regions encompassing the hippocampus, 

parahippocampal regions, and entorhinal cortex28, all regions that are either typically or often 

adversely affected by TLE. The disease has thus also been shown to be associated with alterations in A
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functional connectivity in regions spanned by the MTL network30,47–50. In our study, the 3DCNN 

identified functional and structural regions of the brain known to be affected by TLE. The fact that the 

model was trained only on health control data augmented with synthetic noise and was still able to 

identify regions known to associate with TLE suggests that TLE causes chronic perturbations in brain 

dynamics that are critically relevant to lateralization/localization of the seizure onset zone.

Figure 5 depicts the presurgical mean Grad-CAM maps for LTLE patients with Engel class 1 versus 

Engel class > 1 postsurgical outcome. The map for Engel class 1 showed more diffuse but weaker 

contribution across the brain to the lateralization score when compared to Engel class > 1, which is 

more focused on the left temporal and frontal lobes with relatively higher contribution levels. A 

potential interpretation of these results is that patients who do better postoperatively have a more 

diffuse set of regions with mild abnormal connectivity, and the 3D-CNN is still able to detect them 

and leverage them for the purpose of lateralization. If confirmed in a larger data set, the spatial degree 

and magnitude of features identified by the 3DCNN could serve as a biomarker to aid in surgical 

planning. An alternative hypothesis would posit that the group of patients with poorer postsurgical 

outcome had more intense focal connectivity changes that spanned a more local set of regions, which 

in turn contributed more on average to the classification score.

  

The main limitation of our study is the small size of the test set and the number of patients with 

postsurgical outcomes. A possible consequence is potential asymmetry between the left and right 

TLE groups (with lower MTS and poorer Engel class outcomes in the left TLE group). Further 

work with larger data sets will be required for validation of this technique prior to clinical 

applications. Since the training method is general, and not specific to TLE, future work could involve 

designing models which are not specific to TLE and can generalize to multiple other forms of 

epilepsy. Finally, we hypothesize that models capable of segmenting individual regions, rather than 

just hemisphere classification, could be trained to facilitate fine-grained localization of seizure onset 

zones, of potential use for individually tailored presurgical planning.  

  

ConclusionsA
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Non-invasive techniques capable of localizing the seizure-onset zone could significantly improve the 

evaluation of patients with intractable temporal lobe epilepsy. In this work, we have demonstrated the 

ability of deep learning to identify the correct hemisphere of the seizure onset zone in TLE patients 

using RS-fMRI. The model was able to make accurate predictions after training exclusively on 

healthy control data augmented with synthetic noise. This data-driven approach represents a novel 

noninvasive technique for seizure lateralization in TLE that could improve preoperative surgical 

planning and patient outcomes.
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Figure and Table Captions

Figure 1: Top left shows a single frame of BOLD fMRI from a healthy control participant. Top right 

shows the same frame after noise injection via randomly permuting the BOLD time series within the 

highlighted circle. Bottom panel shows the BOLD time series from a single voxel (Raw) versus the 

same time series after noise injection or random permutation. 
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Figure 2. Grad-CAM for left and right seizure onset zones (radiological convention, slices shown are 

focused on the temporal lobes). Larger values represent stronger predictors. Depending on the 

lateralization, the 3DCNN learns features in the ipsilateral hippocampus, amygdala, insula, 

neocortical temporal lobe, orbitofrontal cortex and ipsilateral and contralateral parietal regions.

Figure 3: Average Grad-CAM weights and variance for top 12 structural Freesurfer regions. Left 

image shows the average Grad-CAM weights calculated for left TLE, and right image shows average 

Grad-CAM weights for right TLE. Anatomical regions most useful for classification were found in 

temporal, frontal, parietal, and insular regions.

Figure 4: Average Grad-CAM weights and variance for resting state networks. The RSNs most 

predictive overall include the default mode (DMN), dorsal attention (DAN), and medial temporal 

(MTL) networks. Left image shows the primary RSNs predictive for left TLE, including DMN, MTL, 

and frontal parietal network (FPN). Right image shows the primary RSN predictive for right TLE, 

which include DAN, DMN, and MTL. Note difference in scale of the two plots.

Figure 5. Mean Grad-CAM results (radiological convention) comparing Engel class 1 and Engel class 

>1 in left TLE patients. The mean Grad-CAM map for Engel class >1 shows more localized regions 

on the left contributing to the lateralization score with higher magnitude when compared to Engel 

class 1.  

Table 1. Demographics
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Table 1. Demographics 

 Controls Left TLE Right TLE 

N 2132 20 12 

Age (mean±STD) 37.8±21.5 42.4±13.9 42.4±13.3 

% Female 58% 55% 75% 

Age at onset 

(mean±STD) 

- 27.3 (17.5) 13.7 (14.9) 

% MTS/Atrophy - 40% 67% 

% Surgical outcomes - 45% 50% 

% Engel Class 1 - 55% 100% 

MTS, Mesial temporal sclerosis, STD, standard deviation 
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