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The ABCD Study® aims to characterize adolescent development 
and evaluate many influences that might shape developmen-
tal trajectories. While numerous factors are plausibly associ-

ated with neurodevelopment (for example, nutrition, sleep, exercise, 
head injuries and substance use), we have a limited understand-
ing of the magnitude of their effects, their interactions with one 
another and the moderating influences of other risk or resilience 
factors. The longitudinal ABCD Study (www.ABCDstudy.org) aims 
to address these matters with an especially large, demographically 
diverse sample that is richly characterized with extensive pheno-
typing and genotyping. It realizes an open science model through 
which data are fully shared with the research community.

This manuscript describes the ABCD baseline assessment of 
brain function in 9- and 10-year-old participants. As the bulk of 
the human neuroimaging literature has focused on adult func-
tioning, less is known about brain function in childhood and, 
particularly, in preadolescent children. Neurodevelopment from 
ages 10 to 20 is, however, of particular interest as these ages are 
associated with notable brain, cognitive and emotional maturation 
and the emergence of many prevalent mental health disorders1. 
Consequently, there is great interest in understanding the etiology 
and neurobiology of psychological processes thought to be risk 
factors for the development of mental and physical health chal-
lenges, including cognitive control, reward, working memory and 
social/emotional function.

Cognitive control is often assessed using inhibitory tasks, such 
as the SST, in which a motor response must be countermanded2. 
Inhibitory tasks, including the SST, are known to elicit activation in 
the dorsal anterior cingulate (dACC), inferior frontal gyrus (IFG), 
dorsolateral prefrontal cortex (dlPFC) and insula3. Studies of these 
processes in children and adolescents have typically found simi-
lar regional activation during inhibitory tasks4. Consistent results 
have been found for fMRI and electroencephalogram (EEG) studies 
showing that from childhood to adolescence there is an increase in 
brain activity in the dACC5, which corresponds to improved inhibi-
tory control6. However, this pattern may not be consistent across the 
brain, as there have been mixed findings regarding whether activa-
tion in the dlPFC and IFG increases with age and improved inhibi-
tory control5–7, with more recent findings suggesting that activation 

in the prefrontal cortex may decrease throughout adolescence, par-
alleling improved inhibitory control4,8,9.

Functional neuroimaging investigations of working memory also 
demonstrate substantial concordance between adults and children 
in neural responses as well as some notable differences10–12. A recent 
meta-analysis of verbal and visuospatial N-back tasks (in which one 
indicates if a currently presented stimulus is the same as a stimu-
lus presented n items earlier in a serial stream of stimuli) found 
that adults and children show consistent patterns of activation in 
the dlPFC, posterior parietal cortex (PPC), supplementary motor 
area (SMA) and insula10. However, similar to the SST, regional lev-
els of activation during the N-back task have been shown to differ 
between children and adults, mirroring improvements in working 
memory ability13–15. In the largest study to date to examine change 
in functional activation during the N-back task across adolescence 
(N = 951), Satterthwaite et al.13 found increases in activation in the 
dlPFC, SMA and PPC from ages 8 to 22. Interestingly, they also 
found decreased activation in the default mode network (DMN), 
suggesting improved segregation of the cognitive control and DMN 
regions with advancing age and improved performance on the 
task. One study using a subset from the ABCD baseline assessment 
found that frontoparietal activity during the 2-back (relative to 
0-back) task relates to working memory performance measured out 
of the scanner using the list sort task, suggesting that brain activ-
ity during the N-back task functions as a general index of working 
memory ability16.

Importantly, by varying the stimuli, psychological tasks can 
also implicitly probe social and emotional processes. A recent 
meta-analysis of affective working memory tasks in adolescents 
and adults found that there was little effect on working memory 
performance when using affective stimuli, and that the differences 
that were observed were more concentrated among older adults 
(Schweizer et al.17; 165 studies, N = 7,433). However, this analysis 
did find differences in brain activation associated with affective 
working memory stimuli (33 fMRI studies, n = 683), with affec-
tive stimuli more likely to elicit activation in the ventromedial pre-
frontal cortex (vmPFC), amygdala, temporal cortex and occipital 
cortex. While this analysis did not examine emotional faces specifi-
cally, studies of emotional faces were included, likely explaining the 
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observed temporal/occipital activations. In other studies, working 
memory tasks using facial stimuli have been found to elicit dif-
ferential patterns of activation in the temporal/occipital cortices, 
specifically in the fusiform face area (FFA) and occipital face area 
(OFA)18,19. A recent large study by Fuhrman et al.20 (N = 661) found 
that the ability to distinguish faces is still developing until age 16, 
confirming prior smaller studies21. Scherf et al.22 found that adoles-
cents aged 11–14 years old showed similar but attenuated patterns 
of face-related activation compared to adults. In one of the largest 
studies of adolescents to date (N = 1,100), Tahmasebi et al.23 found 
similar regions activated by facial stimuli in adolescents aged 13–15 
years old, including the FFA, OFA and superior temporal sulcus 
(STS). However, this study included neither younger children nor 
older adult comparison groups. While the primary regions elicited 
by facial recognition tasks are likely similar throughout develop-
ment, there is evidence that activation in core facial recognition 
regions (that is, the FFA, OFA and STS) increases in response to 
these tasks throughout development starting at age 7 to 8 (ref. 24). 
Additionally, work by Kadosh et al.25 found that complementary 
regions supporting the primary facial recognition regions change 
throughout development (N = 42). When considering young chil-
dren (aged 5–8 years old), Scherf et al.26 found that children did not 
demonstrate these characteristic patterns of activation to faces at all, 
lacking activation in the FFA, OFA and STS (N = 30), although their 
activation to place stimuli in the parahippocampal area was similar 

to that of adults. Indeed, several other studies concluded that the 
FFA is not consistently activated in children under the age of 8 (for 
review, see Scherf et al.22).

With regard to reward-related processes, such as reward antici-
pation and receipt, many studies have suggested similar task-related 
fMRI activation in children and adolescents aged 12–17 as in adults, 
with a network of reward anticipation regions, including the ventral 
and dorsal striatum, the insula, SMA, premotor cortex, thalamus 
and amygdala, and a network of reward receipt regions, including 
the ventral striatum (VS), amygdala, vmPFC and posterior cingu-
late cortex (PCC)27–29.

Overall, investigations into these key neurocognitive processes 
suggest qualitatively similar patterns of activation in children 
and adults with some inconsistencies across studies, likely due, 
in part, to small samples of convenience. Indeed, low reproduc-
ibility in psychological and clinical neuroimaging studies due to 
small sample sizes is now acknowledged to be a critical concern 
in the field30–32. While Thirion et al.33 suggested that 20 or more 
participants are required for reliable task-based fMRI inferences, 
Turner et al.34 recently pointed out using the large fMRI dataset 
of the Human Connectome Project (HCP)35 that such recom-
mendations are outdated. Indeed, Turner et al. report that even 
datasets with 100 or more participants can produce results that 
do not replicate, suggesting that larger sample sizes are necessary 
for task-based fMRI34.
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Fig. 1 | fMRI task designs in the ABCD study. a–c, Schematics of the SST (a), the EN-back task (b) and the MID task (c). Schematics reproduced from 
ref. 51, under a CCB 4 license; ISI, interstimulus interval; ITI, intertrial interval; RT, reaction time; SS, stop signal; SSD, stop signal delay; SSRT, stop signal 
reaction time.
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Here, we report cortical and subcortical analyses of the ABCD 
task fMRI battery assessing response inhibition, working memory 
and reward processing assayed via the SST, EN-back task and MID 
task (Fig. 1), respectively, at the study’s first acquisition time point. 
We focus on (1) the patterns and magnitude of brain activity as pre-
dicted by prior research in adolescent samples; (2) the reproduc-
ibility of activation patterns, including an assessment of group-level 
reproducibility as a function of sample size; and (3) the relation-
ships between activation magnitudes and individual differences 
in task abilities during response inhibition and working memory. 
We hypothesized that the three fMRI tasks would show robust pat-
terns of activation consistent with those identified in prior stud-
ies in children mentioned in the literature review above, including 
cortico-striatal activations associated with motor response inhibi-
tion3,4, frontoparietal activation associated with working memory 
performance10,36 and dopaminergically rich subcortical regions 
associated with reward processes27–29. Additionally, we hypoth-
esized that patterns of associations between task performance and 
task activation would mirror activation patterns, as has been found 
in prior literature. Further, we hypothesized that reproducible 
group-level activation maps would likely differ among tasks (being 
biggest on the block design primary EN-back contrasts) and likely 
require more participants than are included in typical neuroimag-
ing studies to reproduce effects.

The analyses that are reported were designed to provide a largely 
descriptive account of the patterns of activation present in the 
ABCD sample. For instance, we report all analyses in effect sizes and 
do not threshold by statistical significance. The goal of the present 
paper is to provide a baseline reference (task activation magnitudes, 
sensitivity to individual differences in performance and reproduc-
ibility) for researchers using the ABCD task fMRI data to address 
their questions of interest regarding adolescent brain development.

Results
After applying the exclusion criteria (see Table 1 and Methods for 
details), the resulting sample sizes and demographics among the 
fMRI tasks were as follows: SST (N = 5,547, mean age = 9.96 ± 0.63, 
49.82% male), EN-back (N = 6,009, mean age = 9.96 ± 0.63, 50.77% 
male) and MID (N = 6,657, mean age = 9.95 ± 0.63, 50.43% males). 
Table 2 presents the demographic composition of samples that 
were included and excluded from the current study (see Methods  
for details).

Individual behavior performance measures and task fMRI beta 
weights. Performance on the SST was in the anticipated range (mean 
(s.d.), SSRT = 302.6 (67.1) and Go RT = 529.9 (77.4)), with a rate of 

correct inhibitions of 51.4% (0.06). The distributions for EN-back 
D′ values were as expected, with children performing better on 
the 0-back task (D′ = 2.51 (0.9)) than on the 2-back task (D′ = 2.0 
(0.3); P < 0.001). D′ mean (s.d.) values from the post-scan recogni-
tion memory test were 0.94 (0.63) for happy faces, 0.92 (0.63) for 
fearful faces, 0.85 (0.61) for neutral faces and 1.34 (0.82) for places. 
The distributions of SSRT and D′ behavioral performance measures 
are shown in Fig. 2. Paralleling the individual differences in perfor-
mance, task activations in relevant task regions of interest (ROIs) 
also show large interindividual variation; Fig. 2 shows the distri-
bution of average local maxima beta weights within task-specific 
regions known to be involved in SST (Fig. 2d,e), EN-back (Fig. 2f) 
and MID (Fig. 2g) tasks. An analysis of covariance (ANCOVA) 
assessing the correlation between D′ values from the post-scan 
recognition memory test and EN-back beta weights in the bilateral 
dlPFC showed significant associations across contrasts and condi-
tions, yet with small correlation coefficients, with the most impor-
tant association observed between the happy faces condition and 
the 2-back versus 0-back contrast (P = 0.0001 and r = 0.17).

Task activation Cohen’s d. Cortical and subcortical Cohen’s d maps  
of contrasts for each task are represented in composite Figs. 3a,b, 
4a,b, 5a,b and 6a,b. In addition, static and three-dimensional 
(3D) dynamic views of both thresholded and unthresholded 
Cohen’s d maps are available online (download required to display  
the dynamic maps) at https://drive.google.com/drive/folders/ 
1VPnY8SS68JYis-AI-mt8_BJqc4r6GD5D. Task fMRI activation  
maps generated from the ABCD dataset are provided in Supple
mentary Data 1 for the research community to use as task fMRI 
activation templates in children, are available online as manuscript 
files and can be downloaded as high-resolution MGZ images.

As shown in Fig. 3, the SST showed robust activation for both 
correct Stop versus correct Go and incorrect Stop versus correct 
Go conditions in multiple frontoparietal, temporal, insular and 
occipital regions of the cortex. Key nodes of the response inhibition 
circuitry, such as the IFG, dACC, pre-SMA and, subcortically, the 
putamen and caudate, were activated. Deactivations were observed 
in the left postcentral somato-sensorimotor cortex (presumably 
reflecting the motor response that is present on Go trials and absent 
on successful inhibitions) and in DMN centers, including the pre-
cuneus and vmPFC.

As shown in Fig. 4, the 0-back versus fixation and 2-back versus 
fixation contrasts of the EN-back task produced widespread robust 
activation in bilateral regions, including parts of the superior, mid-
dle and inferior frontal gyri, the inferior parietal lobule, the dACC/
SMA, the precentral gyrus and the occipital pole. Substantial deac-
tivations were also observed within a number of bilateral regions, 
including the precentral and postcentral gyri, superior parietal  
lobule, lingual gyrus, precuneus/PCC, the rostral ACC/vmPFC and 
the posterior insula. The 2-back versus 0-back subtraction showed 
more circumscribed activity in the middle and superior frontal gyri, 
inferior parietal gyrus, precuneus and dACC as well as focal deacti-
vations in the vmPFC/rostral ACC, PCC, precentral gyrus and pos-
terior insula. As expected, the faces versus places contrast revealed 
dissociable activations; face stimuli produced elevated activation in 
the FFA, OFA and bilateral amygdalae, while place stimuli robustly 
activated large portions of the occipital cortex in addition to hip-
pocampal and parahippocampal regions. The negative and positive 
faces contrasted to neutral faces (Fig. 5) showed reduced activations 
compared to the other contrasts, with the most notable effects being 
activation in the amygdalae for negative versus neutral faces and 
deactivation in bilateral putamen for positive versus neutral faces.

As shown in Fig. 6, anticipation of potential wins and losses on 
the MID task produced largely similar patterns of activation in parts 
of the ACC, precentral gyrus, inferior parietal lobule and frontal 
and occipital gyri as well as in the bilateral anterior insula (AI) and 

Table 1 | Inclusion criteria in the task fMRI analyses and number 
of participants remaining after each step of exclusions

Criteria\task EN-back SST MID

Total number scanned participants 10,189 10,294 10,385

Two runs that passed MRI quality control 8,981 9,035 9,140

Data available excluding Philips scans 8,163 8,140 8,201

Mutual vertex and voxel data availability 7,969 7,288 7,427

Motion censoring (mean FD < 0.9 mm) 7,680 7,000 7,239

d.f. across runs >200 7,680 7,000 7,225

Beta weights outlier detection 6,666 6,995 7,214

Passed behavioral performance QC 6,085 5,116 6,753

No missing covariates 6,009 5,547 6,657

Covariates include age, sex, education, puberty, race, family and scanner ID. FD, framewise 
displacement; QC, quality control.
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extensive subcortical regions. The feedback contrasts showed that 
negative outcomes (failing to win a reward and failing to avoid a 
loss) produced robust activity in the AI as well as in temporal 
and temporo-parietal regions. Subcortically, a post hoc ROI-level 
analysis showed that the anticipation of rewards produced more 
activation than did the anticipation of losses, including robust ven-
tromedial striatal activity (Cohen’s d in the ventromedial striatum 
was significantly different between the two contrasts, P < 10−4), 
while the putamen showed an opposite pattern for feedback with 
more activation when avoiding a loss than when winning a reward 
(Cohen’s d in the putamen was significantly different, P < 0.0003).

We also calculated the absolute maximum Pearson’s correlation 
coefficient for cortical and subcortical activation measures for a 
single voxel and vertex per contrast and the variables age, puberty, 
education and scanner site. Overall, the vertex/voxelwise univari-
ate analyses did not explain more than 1% of the variance associ-
ated with task activation (see Supplementary Tables 1 and 2 and 
Supplementary Notes 1 and 2 for more details). We also assessed the 
relationship between cortical thickness and functional brain acti-
vation in activated cortical regions for each fMRI task and found 
that cortical thickness did not explain more than 0.5% of the vari-
ance associated with BOLD activation in one single activated region 
(see Supplementary Fig. 1 and Supplementary Note 3 for more 

details). In addition, we computed the correlation of BOLD activa-
tion across the three fMRI tasks and found very small associations 
among them (see Supplementary Fig. 2 and Supplementary Note 4 
for more details). Finally, to determine if FD and the number of cen-
sored frames contaminate the activation estimates of each task, we 
computed the Pearson correlation coefficient between the Cohen’s d 
maps as produced with our original set of covariates and Cohen’s d 
maps computed when d.f. and FD, calculated per participant, were 
added as covariates. Activation maps were highly correlated after 
adding either d.f. or FD (see Supplementary Table 3, Supplementary 
Fig. 3 and Supplementary Note 5 for more details).

Between-group task spatial reproducibility. Cortical and sub-
cortical Cohen’s d correlation coefficients are shown for each task 
and contrast in Figs. 3e, 4e, 5c and 6c as a function of sample 
size. In addition, an HTML dynamic tool to display the correla-
tion coefficients as a function of sample size is available for down-
load in Supplementary Data 2 with a usage demo provided in 
Supplementary Fig. 4.

The cognitive, working memory contrasts of the EN-back 
task showed the strongest between-group spatial reproducibil-
ity, requiring a sample size of n = 18 for cortical and n = 56 for 
subcortical maps on average to reach a correlation coefficient of 
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0.8 or more across contrasts. Meanwhile, the emotional contrasts 
reached a maximum correlation coefficient of 0.75 with n = 2,500, 
except for cortical maps of the negative versus neutral faces con-
trast, requiring n = 1,285 to reach a correlation coefficient of 0.8 
or more (Figs. 4e and 5c). Group-level spatial reproducibility for 
the primary SST contrasts required a sample size of n = 32 for 
cortical and n = 80 for subcortical maps on average to reach a 
correlation coefficient of 0.8 or more across contrasts (Fig. 3e). 
Finally, the MID task required a sample size of n = 112 for corti-
cal and n = 143 for subcortical maps on average to reach a cor-
relation coefficient of 0.8 or more across the primary contrasts 
(Fig. 6c). Meanwhile, the secondary contrasts (anticipation of 
large versus small rewards and anticipation of large versus small 
losses) required a sample size of n = 775 for cortical and n = 1,027 
on average for subcortical maps to reach a correlation coefficient 
of 0.8 or more (Fig. 6c).

Individual differences. Cortical and subcortical performance cor-
relation maps of SST and EN-back contrasts are shown in Figs. 3c,d 
and 4c,d. In addition, static and 3D dynamic views of correlation 
coefficient maps are available online at the following address (down-
load required to display the interactive maps): https://drive.google.
com/drive/folders/1VPnY8SS68JYis-AI-mt8_BJqc4r6GD5D.

The correlation analyses between the SST beta weights and SSRT 
revealed that activation in individual vertices/voxels explained up 
to 2% of the individual performance differences in response inhibi-
tion. Whereas correlations were largely negative for the correct Stop 
contrast (faster SSRT accompanied by greater stop-related activa-
tion), a more varied pattern of positive and negative correlations 
was observed for the incorrect Stop contrast.

The performance correlation maps of the EN-back task largely 
recapitulated the task activation maps insofar as the correla-
tions tended to be the largest where task activation was strongest. 
Activation in individual vertices/voxels explained up to 2.2% of 

individual performance differences in working memory as mea-
sured by the EN-back D′ accuracy metric.

In addition, we assessed performance correlation between the 
EN-back task and SST and found significant negative correlations, 
albeit with small coefficients of determination, between SSRT 
and D′ for 0-back and 2-back tasks (see Supplementary Fig. 2 and 
Supplementary Note 4 for more details).

Finally, the spatial reproducibility of these brain performance 
correlation maps is shown in Figs. 3e and 4e. The reproducibility of 
these maps is notably smaller than the group activation maps, with 
up to 2,500 participants being insufficient in most cases to reach an 
asymptote of 0.8.

Discussion
In this work, we reported fMRI activation patterns for SST, EN-back 
and MID tasks from the baseline assessment of the ABCD Study 
cohort. Further, we reported both the group-level spatial reproduc-
ibility of activation patterns as a function of sample size and the sen-
sitivity of the activation maps to individual differences in behavioral 
task performance.

Overall, the task activation patterns observed in this study are 
consistent with the extant literature on adolescents and adults. The 
SST activation patterns replicate previous task fMRI SST data and 
meta-analyses in adults, adolescents and children insofar as the SST 
robustly activated regions known to play an important role in inhib-
itory control, such as the insula, superior/middle/inferior frontal 
gyrus, dACC/SMA, dlPFC, PPC, thalamus and basal ganglia (Rae 
et al.37, N = 331; Hung et al.38, N = 1,447; Swick et al.39, N = 440). The 
correct and incorrect Stop maps were largely similar, likely indi-
cating that the response inhibition circuitry is engaged even when 
the attempt to inhibit fails, which previous EEG data link to motor 
inhibition circuitry being activated, albeit too slowly, on commis-
sion errors40. The incorrect Stop maps do show greater activations 
than correct Stops in the left postcentral somato-sensorimotor 
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gyrus, the AI and the dACC (mean Cohen’s d significantly different 
at P < 0.001), reflecting amplified right-handed motor and salience 
network activations when committing a commission error.

The regions activated by the 0-back versus fixation, 2-back ver-
sus fixation and 2-back versus 0-back conditions of the EN-back 
task included the dlPFC, PPC, SMA and AI. This activation pat-
tern has been consistently observed across different N-back stimu-
lus types and contrasts41 as well as in an analysis, using the largest 
sample to date (N = 1,064), of the EN-back task in the HCP18,36. 
The activation patterns are consistent with other tasks of working 
memory and executive functioning42 and may constitute a unified 
cognitive control network43. Additionally, consistent with the deac-
tivations we report, the EN-back task has been shown to reliably 
deactivate the DMN18,44 relative to both resting and active baselines. 
This task was also shown to provide a useful probe of the intrinsic 
anticorrelation that has been proposed between cognitive control 
and DMN regions45. In line with our findings, a recent paper inves-
tigating the associations between working memory, cognitive abili-
ties and fMRI activation in data from over 4,000 9- to 10-year-old 
participants enrolled in the ABCD Study16 demonstrated that work-
ing memory function was significantly related to 2-back versus 
0-back (that is, high versus low memory load) activation in regions 
of the frontal and parietal cortex, including the bilateral intrapari-
etal sulci, dorsal premotor cortex/frontal eye fields, dlPFC, AI and 
dACC extending into the pre-SMA and precuneus. The results also 
revealed that working memory was not significantly associated with 
emotion-related activation during the EN-back task, inhibitory 
control-related activation during the SST or reward-related activa-
tion during the MID task. The faces versus places contrast yielded 
stimulus-specific activation in the amygdala, hippocampus and 
precuneus and in different regions of the visual cortex, including 
the FFA and OFA, consistent with evidence linking face viewing 
to the FFA and OFA22,26 and place processing to the precuneus and  

hippocampus46,47. The contrasts identifying differential responses to 
emotional faces, when compared with neutral faces, showed smaller 
Cohen’s d effect sizes but have specific value by assaying social/emo-
tional and memory processes (for example, heightened amygdalar 
response to negative faces) secondary to the primary focus on work-
ing memory.

The regions activated during reward anticipation in the MID 
task included the striatum, dACC, AI and parietal and occipital 
gyri, which is consistent with large studies (N > 830) in children and 
adults, providing evidence that these regions are robustly associ-
ated with the reward anticipation condition of the MID task27,28,48. 
Similarly, the feedback contrasts showing activations in the PCC, 
vmPFC and VS are also consistent with this literature. However, 
in the large study by Cao et al.28 using the IMAGEN dataset, only 
the vmPFC was activated by reward outcomes. When Silverman 
et al.27 directly contrasted positive and negative valence events, they 
found positive events to be associated with greater activation in the 
VS, PCC, subcallosal gyrus and lateral occipital cortex. However, 
that study did not distinguish between anticipation and outcome 
phases. Subcortically, the present results showed higher activation 
in the ventromedial striatum for reward anticipation than for loss 
anticipation. In addition, there was higher activation when avoid-
ing a loss (negative reinforcement) than when winning a reward 
in the ventrolateral striatum. These distinct reinforcement-related 
effects are consistent with a recent activation likelihood estimation 
meta-analysis of the MID task in 1,271 adults across 50 studies, 
which reported greater activation during reward anticipation than 
for reward outcome in the VS, insula and SMA; this meta-analysis 
also found greater activation for reward outcome than for reward 
anticipation in the vmPFC and PCC29. Comparing activation dur-
ing the anticipation phase for large and small rewards, we observe a 
noticeable gradation in response, with a markedly lower activation 
across subcortical regions and the dorsomedial prefrontal, cingulate 
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and right inferior frontal cortex when anticipating smaller rewards. 
By contrast, we observe much less of a gradation in response dur-
ing anticipation of loss. Although broader activation in the subcor-
tex and right inferior frontal cortex during anticipation of a large 
(as opposed to small) loss is apparent, the gradation is less pro-
nounced than for reward anticipation. These observations are con-
sistent with a more general aversion to loss in contrast to a more 
value-dependent neural response in anticipation of reward.

Group-level task spatial reproducibility. The group-level spatial 
reproducibility plots demonstrated that group activation patterns 
for the primary contrasts of interest tend to be highly consistent 
across individuals for the SST, EN-back and MID tasks, highlight-
ing the robust processes of interest involved in response inhibition, 
working memory and reward processing. The highest spatial repro-
ducibility was observed in the EN-back task, particularly in work-
ing memory and faces versus places contrasts; this may reflect both 
the robustness of the cognitive processes it engages as well as task 
design features. Specifically, the EN-back task uses a block design, 
as opposed to the event-related designs of the SST and MID tasks, 
and does not require as fine-tuned a decomposition of the time 
series data such as that required, for example, by the more numer-
ous regressors (that is, more conditions) of the MID task. Moreover, 
another factor influencing reproducibility is the number of trials 
per condition for any given participant, which is lower for the MID 
and emotional EN-back contrasts where lower spatial reproducibil-
ity coefficients are observed.

It is important to note that these analyses describe the spatial 
reproducibility of task fMRI with a focus on group-level data in 

which we varied sample size. Thus, these results speak to the abil-
ity of tasks to generate the same activation patterns across separate 
groups of participants. They should not be interpreted as findings 
of test–retest reliability, which concerns whether individual differ-
ences in task activation are similar across different scanning ses-
sions. Test–retest reliability is also an essential task design feature 
for a longitudinal study49. It cannot be assessed with just the single 
ABCD baseline assessment, and the subsequent biennial assess-
ments introduce potential confounding data associated with devel-
opmental changes and perhaps even practice effects. However, this 
is a matter that can potentially be addressed with subsequent data 
releases. For example, there is variation in both the ages at which the 
baseline assessments were obtained (from 9 to 10) and variation in 
the intervals between the baseline and second assessments (sched-
uled for 2 years, but this can vary between 1 and 3 years), which, 
combined, may make it possible to estimate age and practice effects 
separately and consequently assess task test–retest reliability.

The present paper’s group reproducibility findings may help 
inform the neuroscientific community on which tasks/contrasts 
from the ABCD dataset provide the most consistent maps for mean 
group statistics, which can, in turn, inform investigations compar-
ing groups hypothesized to show activation differences.

Task sensitivity to individual differences in performance. The 
ranges in task performance and in ROI-level activation shown in 
Fig. 2 suggest that the tasks are suitable for exploring interindivid-
ual differences. The SST performance analyses showed that brain 
activations when successfully inhibiting were inversely correlated 
with SSRT; but, these vertex/voxelwise relationships were modest, 
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explaining a maximum of 2% (r = −0.14) (lateral thalamic voxels) of 
the individual behavioral performance differences. It is noteworthy 
that more varied correlation patterns were observed for activity dur-
ing incorrect Stops, with better inhibitors (that is, faster SSRT) show-
ing greater activation in parts of the insula and the dlPFC. The areas 
showing these positive correlations with SSRT were those that likely 
reflect error-related processes (that is, more activation for incorrect 
Stops than correct Stops), suggesting a greater interoceptive and 
cognitive control response to errors in better inhibitors. Boehler 
et al.50 previously reported the left AI to be the sole region showing a 
strong relationship between brain activity during stopping and SSRT 
(r = −0.69 and −0.58 depending on how SSRT was measured), albeit 
with a sample size of just 15 participants. In the EN-back task, per-
formance analyses showed that brain activations were positively cor-
related with D′ measures, explaining a maximum of 2.2% (r = 0.15) 
of the individual behavioral performance differences (the strongest 
associations were observed in medial thalamic voxels).

The relatively small correlations between brain activation and 
performance on these two cognitive tasks highlight a fundamental 
challenge that motivates the ABCD Study. Namely, the size and scope 
of the ABCD Study provides an opportunity for a deep exploration 
of the mechanisms linking brain function to individual differences 
in numerous phenotypic measures and in individual develop-
mental trajectories. Future research avenues include expanding 
beyond vertex/voxelwise associations to incorporate multivariate 
approaches and including other brain metrics, such as task con-
nectivity, intrinsic connectivity, brain structure and anatomical 
connectivity. Improved assessments of behavior (for example, com-
putational modeling of task performance) and brain (for example, 
incorporating individual differences in brain shape and function 
localization) may improve our ability to detect brain–behavior 
associations. Distal factors, such as genetics or in utero exposures, 
and current factors, such as exercise, sleep, education and other 
intellectual pursuits, may all contribute to the magnitude and pat-
terns of brain–behavior associations. Consequently, incorporating  

heterogeneity across participants (for example, biotyping) 
and exploiting the longitudinal aspects of the study wherein 
within-participant changes in behavior can be associated with 
within-participant neurodevelopmental changes may prove espe-
cially sensitive approaches for linking brain to behavior.

The large sample size of the ABCD Study enables researchers 
to move beyond group-level phenomena toward understanding 
interindividual differences and will, as the children age and repeat 
assessments are taken, elucidate intraindividual differences in brain 
function. Obtaining sensitive measurements of brain function will 
enable researchers to track changes in function reliably through 
development, assess how brain function co-develops with brain 
structure and identify what factors (genetic, environmental) affect 
brain development. Importantly, robust and reliable measures at 
the preadolescent stage will enable researchers to assess if future 
outcomes of interest (for example, mental health problems, sub-
stance use, academic excellence and resilience) can be predicted by 
baseline brain function, thereby informing etiological mechanisms. 
In addition, through the parallel assessment of behavior and any 
lagged changes that might be observed in relationship to brain func-
tion, researchers can identify plausible causal influences of those 
behaviors on brain development and vice versa.

The present results demonstrate robust fMRI activation patterns 
in tasks that engage inhibitory control, working memory and reward 
processing. They establish a well-characterized baseline from which 
to follow the children in the ABCD Study throughout adolescent 
development. Overall, the task activation patterns observed in this 
report are consistent with prior studies and underscore the value of 
the ABCD Study as a scientific resource for tracking changes in brain 
function during adolescence and into early adulthood. In addition 
to enabling cross-sectional analyses of interindividual and group 
differences, these activation patterns offer the potential for exam-
ining baseline predictors of future development and behavior and 
for quantifying changes in brain function that may arise from the 
numerous influences expected to affect development and behavior.
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Methods
Sample. The ABCD sample was largely recruited through public, private and 
charter elementary schools. ABCD adopted a population neuroscience approach 
to recruitment30,52 by using epidemiologically informed procedures to ensure 
demographic variation in its sample that would mirror the variation in the 
US population of 9- and 10-year-olds53. A probability sampling of schools was 
conducted within the defined catchment areas of the study’s nationally distributed 
set of 21 recruitment sites. All children in each sampled school were invited 
to participate following classroom-based presentations, distribution of study 
materials and telephone screening for eligibility. Exclusions included common MRI 
contraindications (such as cardiac pacemakers and defibrillators, internal pacing 
wires, cochlear and metallic implants and Swan–Ganz catheters), inability to 
understand or speak English fluently, uncorrected vision, hearing or sensorimotor 
impairments, a history of major neurological disorders, gestational age <28 
weeks, birth weight <1,200 g, birth complications that resulted in hospitalization 
for more than 1 month, current diagnosis of schizophrenia, moderate or severe 
autism spectrum disorder, a history of traumatic brain injury or unwillingness to 
complete assessments. The ABCD sample also includes 2,105 monozygotic and 
dizygotic twins. Consent (parents) and assent (children) were obtained from all 
participants, and the ABCD Study was approved by the appropriate institutional 
review boards. Data collection and analyses were not performed blind to the 
conditions of the experiments. The ABCD Study’s anonymized and curated data, 
including all assessment domains, are released annually to the research community. 
The ABCD Study is a single cohort, observational and longitudinal design that has 
no randomization of participants to groups. Information on how to access ABCD 
data through the NIMH Data Archive (NDA) is available on the ABCD Study 
data-sharing webpage https://abcdstudy.org/scientists_data_sharing.html. Further 
information on research design is available in the Reporting Summary linked to 
this article.

Inclusion criteria for the current study were predetermined by the ABCD 
DAIRC51. In brief, participants were included if they had (1) two fMRI runs per 
task, (2) cortical vertex and subcortical voxel data available at the time of analysis, 
(3) hemispheric mean beta weights within 2 s.d. of the sample mean for each 
task, (4) at least 200 d.f. over the two scan runs, (5) a mean FD < 0.9 mm for both 
runs, (6) met task-specific performance criteria (described in Behavioral task 
performance) and (7) complete information for covariates of interest (age, sex, 
scanner serial number, race and puberty54) and highest parent education (see Table 1  
for details on datapoints that were excluded from analyses, the rationale and the 
number of participants remaining after each step of exclusions). This resulted 
in varying sample sizes and demographics among the fMRI tasks. No statistical 
methods were used to predetermine sample sizes, but our sample sizes exceed 
those reported in previous publications18,28,35. Given these large sample sizes, data 
distribution was assumed to be normal, although this was not formally tested (see 
Fig. 2 for details on data distributions).

Task fMRI data for 1,512 participants obtained on Philips scanners were also 
excluded from this paper due to incorrect post-processing. Corrected data will 
be available in the ABCD Data Release 3.0. An official statement providing more 
details is available on the ABCD Study website (https://abcdstudy.org/scientists/
data-sharing/). An R script is available at https://github.com/ABCD-STUDY/
fMRI-cleanup to remove Philips fMRI data from tabulated data. Table 2 presents 
the demographic composition of both samples who were included and who 
were excluded from the current study. Although the differences between these 
two samples are statistically significant, which is not surprising with over 10,000 
participants in the analyses, the effect sizes were small (Cramer’s V ≤ 0.16), and, 
most importantly, the fMRI samples showed considerable demographic diversity 
(and in this regard are very similar to the full sample). In addition, propensity 
weighting scores are available in the ABCD Data Analysis and Exploration Portal 
(DEAP) for researchers who wish to adjust sample estimates to population-level 
demographics.

fMRI tasks. The ABCD Study’s fMRI behavioral tasks include the SST, EN-back 
task and MID task. These tasks were selected to probe inhibitory control, emotion 
processing and working memory and reward processing51. Participants practiced 
the three tasks before scanning to ensure that they understood the instructions 
and were familiar with the response collection device. While the fMRI tasks were 
always collected last as part of the fixed order of the scanning session, the order 
in which the fMRI tasks occurred was randomized across participants as well 
as the ordering of the event-related fMRI task’s trials. There were 12 trial-order 
variations (pseudorandomized) of the SST and MID tasks. Siblings were given the 
same order of scans and trial-order version of the MID task and SST to minimize 
within-family variability. For further details, see Casey et al.51. The ABCD 
imaging protocol was designed to extend the benefits of high temporal and spatial 
resolution of imaging protocols of the HCP55 with the multiple scanner systems of 
participating sites56.

SST. The SST57 presented leftward and rightward facing arrows in serial order  
(‘Go’ stimuli). Participants indicated the direction of the arrows using a two-button 
response box (left and right buttons). Participants were instructed to respond as 

quickly and accurately as possible, but were told not to respond on trials in which a 
left or right arrow was followed by an arrow pointing upward (the ‘Stop’ signal).

The SST had an event-related design with two runs. Each had 180 trials, of 
which 30 were ‘Stop’ trials, yielding a total of 60 ‘Stop’ trials and 300 ‘Go’ trials. 
Each trial lasted 1 s. The time between the ‘Go’ and ‘Stop’ signals (SSD) varied 
dynamically based on a participant’s success on the prior trial so as to achieve a 
50% success rate (starting at 50 ms, the SSD increased by 50 ms if the participant 
successfully stopped on the previous trial and decreased by 50 ms if they 
responded; Fig. 1a).

EN-back task. The EN-back task was a modified version of a traditional N-back 
task18,58 using a block design that added elements of facial and emotional 
processing. This task was designed so that through fMRI contrast subtraction 
it would be possible to investigate working memory, facial recognition and 
emotional processes independently or to investigate the interaction between 
working memory, faces and emotion. The current analysis focused on contrasts 
that isolated working memory and facial recognition/emotion; these contrasts 
were shown to be effective in eliciting neural responses consistent with standard 
working memory, facial recognition and emotion in adults in the task’s original 
usage in the HCP18. Participants saw a series of stimuli and indicated whether 
each one was the same or different than the stimulus N items earlier (that is, ‘N 
back’). The EN-back task had two conditions: a 2-back as the active condition and 
a 0-back as the baseline condition, which included similar visuomotor demands 
but lower working memory load. In the 0-back condition, participants indicated 
if each stimulus matched a single target presented at the beginning of the block, 
thereby obviating the need to maintain and update a two-item working memory 
load throughout the task. Responses on the 2-back and 0-back were input on a 
two-button keypad, with one button indicating the stimulus was a match and the 
other indicating no match (Fig. 1b).

The EN-back consisted of two runs, each containing eight blocks of trials 
and four 15-s periods containing just a fixation cross. Blocks contained ten trials 
lasting 2.5 s each and were preceded by a 2.5-s instruction screen indicating 
the condition for the upcoming block. Of the ten trials in each block, two were 
targets, two to three were non-target lures and the remainder were non-lures (that 
is, stimuli only presented once). There were 160 trials in total with 96 unique 
stimuli of 4 different stimulus types (24 unique stimuli per type). Three-quarters 
of the stimuli types were human faces, demonstrating happy, fearful or neutral 
facial expressions, with facial expression stimulus type held constant within 
each block. The faces used were all adult faces, which was considered ideal given 
previous research suggesting that children demonstrate similar but stronger 
neural responses to adult faces relative to child faces59,60. Faces were racially 
diverse and derived from two preexisting collections: the NimStim emotional 
stimulus set61 and the racially diverse affective expressions (RADIATE) set of 
stimuli62. Additionally, images of places were used as a fourth stimulus type. The 
place stimuli were taken from prior visual perception studies63,64. For the working 
memory component, the main contrast was a block design analysis contrasting 
2-back and 0-back (eight blocks each). Finally, a post-scan recognition memory 
test was performed18,51 to measure memory processes associated with hippocampal 
functioning. The task included 48 old stimuli presented during the EN-back task 
and 48 new stimuli, with equal numbers of each stimulus type in the old and new 
stimulus sets (12 each of happy, fearful and neutral facial expressions as well as 
places in each set). Ninety-six pictures were presented during the recognition 
memory test. Participants were asked to rate each picture as either ‘Old’ or ‘New’. 
Each picture was presented for 2 s followed immediately by a 1-s presentation 
of a fixation cross. The task assessed memory for stimuli presented during the 
EN-back and took approximately 5–10 min.

MID task. The MID task included both anticipation and receipt of reward and 
loss65,66. Participants attempted to win money or avoid losing money by quickly 
responding to cued stimuli using a response box in their dominant hand. This task 
is entirely focused on response time rather than response choice; hence, there was 
only one response option on this task. For ‘win’ trials, participants could win or 
‘not win’ US$5.00 or US$0.20 depending on whether they responded in the time 
allotted. For ‘lose’ trials, they could either ‘not lose’ or lose the same amounts by 
responding within the time frame. In ‘neutral’ trials, participants completed the 
same action but with no money available to be won or lost (Fig. 1c).

The MID task had an event-related design. The specific sequence of each 
trial was as follows: participants saw a cue denoting the trial type (2 s), with win 
trials shown in a pink circle, lose trials shown in a yellow square and neutral 
trials shown in a blue triangle. Then, participants viewed a fixation cross of 
jittered duration (1.5–4 s), followed by a signal to respond, denoted by a black 
shape that corresponded to the trial type. The duration in which participants 
were able to respond (that is, duration of the response signal) varied between 
trials (0.15–0.5 s). The time allowed to respond at the beginning of the task was 
determined by the participant’s performance during a practice session before 
scanning and, during scanning, was adjusted after every third incentivized trial 
based on the overall accuracy rate of the previous six trials to produce a 60% 
accuracy rate across the task. If the participant’s accuracy fell below the target 
accuracy level, the duration of the target was lengthened. If the participant’s 
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accuracy was above the target accuracy level, the target duration was shortened. 
Immediately after responding, participants received written feedback (for 
example, ‘You won $5’), which was presented for 2 s minus the duration of the 
response target. Each run consisted of 50 contiguous trials (10 per trial type) 
presented in pseudorandom order and lasted 5 min and 42 s. Participants were 
compensated based on their performance on the task (mean earnings, US$20; 
maximum possible earnings, US$60).

fMRI acquisition and preprocessing. High spatial and temporal resolution 
simultaneous multislice/multiband echo-planar imaging (EPI) task-based 
fMRI scans with fast integrated distortion correction were acquired to 
examine functional activity. For Siemens and GE 3 T scanners, the following 
scanning parameters were used: matrix of 90 × 90, 60 slices, field of view 
(FOV) = 216 × 216, echo time (TE)/repetition time (TR) (ms) = 800/30, flip 
angle = 52° and resolution (mm) = 2.4 × 2.4 × 2.4. The fMRI acquisitions (2.4 mm 
isotropic, TR = 800 ms) used multiband EPI with slice acceleration factor 6. 
The order of the three fMRI tasks was randomized across participants. The full 
details of the imaging acquisition protocol were previously described in Casey 
et al.51. The ABCD Data Analysis, Informatics and Resource Center (DAIRC) 
performed centralized initial quality control and processing of the fMRI data. All 
MRI assessments were reviewed by a neuroradiologist for incidental findings. 
Using a combination of automated and manual methods, the fMRI datasets 
were quality controlled for problems, such as acquisition protocol compliance, 
imaging artifacts, motion or file corruption. Processing steps subsequent to fMRI 
preprocessing include the removal of initial frames to ensure equilibration of 
the T1-weighted (T1w) signal and normalization of voxel time series by dividing 
by the mean across time of each voxel. The fMRI preprocessing pipeline started 
with a within-volume head motion estimation and correction by computing 
rigid body transformations between the first time point and each subsequent 
one. Scans were further processed for image distortions resulting from B0 
field inhomogeneity, within-voxel field gradients and gradient nonlinearities. 
Isotropic resampling (2.4 mm) was performed to align fMRI volumes across 
each participant, and a registration matrix was computed with the T1w image. 
Estimates of task-related activation strength were computed at the individual 
level using an AFNI’s 3dDeconvolve67, which implemented a general linear model 
(GLM) applied to each voxel’s time series with additional nuisance regressors 
and motion estimates. Hemodynamic response functions are modeled with two 
parameters using a gamma variate basis function plus its temporal derivative 
(using AFNI’s ‘SPMG’ option within 3dDeconvolve). Fast oscillatory signals 
within the motion estimates related to respiration, between 0.31 and 0.043 Hz, 
were temporally filtered with an infinite impulse response filter. FD was then 
calculated from the filtered motion estimates, and frames with an FD > 0.9 mm 
were censored. Preprocessed time courses were sampled onto the cortical 
surface for each individual participant and then registered to the standard 
FreeSurfer surface atlas (fsaverage). After projecting to the surface, the data 
were smoothed along the cortical surface (5 mm). Voxels containing cortical 
gray matter were projected onto the surface by sampling values 1 mm from the 
gray/white boundary into cortical gray matter at each vertex (using FreeSurfer’s 
mri_vol2surf with ‘white’ surface, ‘-projdist 1’ option and default ‘nearest’ 
interpolation). Average beta coefficients and standard errors were then computed 
for each of the two runs of each task and for each participant, weighted by the 
nominal d.f. (number of frames remaining after motion censoring minus number 
of model parameters). Data used in the current study were derived from the data 
included in the ABCD data release 2.0.1 and included GLM beta coefficients and 
s.e.m. (calculated from the ratio of the beta and t statistic) calculated for each 
voxel and vertex. The full details of the task fMRI quality control and processing 
pipelines were previously described51,56.

Task models included stimulus timing for each condition and linear contrasts 
of conditions56. For MID and SST analyses, events were modeled as instantaneous. 
The EN-back task was programmed as a block design. The SST model included 
regressors for successful Go trials (‘Correct Go’), failed Go trials (‘Incorrect Go’), 
successful Stop trials (‘Correct Stop’) and failed Stop trials (‘Incorrect Stop’), 
creating contrasts of interest correct Stop versus correct Go and incorrect Stop 
versus correct Go. The EN-back model included separate regressors for the 0-back 
faces, 2-back faces, 0-back places and 2-back places conditions; the contrasts of 
interest were 0-back versus fixation, 2-back versus fixation, 2-back versus 0-back, 
faces versus places, negative versus neutral faces and positive versus neutral faces. 
The MID model contained separate regressors for the different anticipation periods 
(large and small rewards or losses and no incentive (neutral) trials) and large and 
small win and loss feedback. MID-computed contrasts of interest were large reward 
versus neutral anticipation, small reward versus neutral anticipation, large loss 
versus neutral anticipation, small loss versus neutral anticipation, reward positive 
versus negative feedback and loss positive versus negative feedback.

Behavioral task performance. Poor performance on the SST leading to exclusion 
was determined by the following criteria: fewer than 150 Go trials, less than 60% 
correct on Go trials, incorrect Go trials greater than 30%, late Go trials (across 
correct and incorrect trials) greater than 30%, no response on Go trials greater 
than 30%, fewer than 30 Stop trials and Stop trial accuracy lower than 20% or 

greater than 80%. The SST used an adaptive algorithm to achieve a 50% success 
rate. To accomplish this, the onset between the Go and Stop signal was varied 
based on individual performance. The adaptive algorithm allowed for calculation 
of the SSRT (the time required to inhibit the motor response57), which was used as 
the performance variable in analyses assessing individual differences in response 
inhibition ability. The SSRT was computed by subtracting the median SSD of 
all stop trials from the nth percentile Go reaction time, where n represents the 
percentage of successful inhibitions (for details on the theoretical underpinnings 
for this estimation, see Logan and Cowan68). Participants with an SSRT < 50 ms 
were excluded from the analysis.

For the EN-back task, D′ was computed for both the 2-back and 0-back 
conditions by calculating each participant’s hit rate, the proportion of targets 
for which the participant correctly indicated a match, and false alarm rate, the 
proportion of non-targets for which the participant incorrectly indicated a match 
or did not respond. The hit and false alarm rates were then z transformed. D′ 
was calculated as the z-transformed hit rate minus the z-transformed false alarm 
rate. D′ for the post-scan recognition memory test was also calculated for each 
participant in the EN-back fMRI sample as the z-transformed hit rate minus the 
z-transformed false alarm rate. Children were excluded from the analyses if D′ was 
less than 0.

The MID task used an adaptive algorithm to maintain accuracy at 60%. To 
be included in the analysis, across the two runs, children had to have at least four 
events for each trial type, including positive and negative feedback.

Statistical Analyses. Task activation maps. The permutation analysis of linear 
models (PALM)’s GLM (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM/) was used 
to generate cortical and subcortical task-specific functional activation maps, 
contrasting the fMRI beta weights against zero, with age (months), sex, scanner 
serial number, race, puberty and highest parent education included as nuisance 
covariates. Scanner serial number and ethnicity were entered as dummy-coded 
variables. All covariates were demeaned. The calculations accommodated the 
non-independence of the participants by incorporating information on sibling 
status into the exchangeability blocks of the permutation analyses. Cohen’s d effect 
sizes were computed for each voxel/vertex as the mean of the residualized betas of 
the contrast divided by the s.d. of the residualized betas:

Cohen′s d =

Mean(residualized betas)

s.d.(residualized betas)

Thus, a Cohen’s d effect size of 1 indicates that the mean beta weight differs 
from zero by 1 s.d. A threshold of d ≥ 0.2 was applied to the task activation maps in 
Figs. 3–6.

Participants with one or two siblings raise the issue of having dependent 
and independent participants in the analyses and implies that the data are not 
homoscedastic, that is, all observations do not share the same variance as there 
are three variance groups determined by family information (0, 1 or 2 siblings). 
To account for family dependence and adjust the Cohen’s d values accordingly, 
we computed first, for each task, a t statistic map using permutation analyses 
(N = 100,000) with the same covariates mentioned above. Next, we repeated 
the same permutation analysis after adding sibling status as a dummy-coded 
variable (each family received a unique value shared by the siblings of that family) 
implemented with PALM’s exchangeability blocks structure69 consisting of two 
columns, with each column indicating a deeper level of dependence (that is a 
unique dummy-coding system where indices on one level indicate how the unique 
subindices of the next level should be shuffled). This restricts the shuffling to only 
occur among the observations that share the same family index, that is, within 
block only. In this kind of permutation, variances are estimated for each block, and 
the Aspin–Welch v statistics that are robust to heteroscedasticity are computed 
instead of t statistics for each voxel/vertex. Finally, cortical and subcortical Cohen’s 
d maps are weighted by the t statistic/v statistic ratio to generate another set of 
Cohen’s d maps adjusted for family information. Only the latter maps are reported 
in the results.

To get an estimate of interindividual variation in activation maps, beta 
weights were extracted from relevant task-specific ROIs known to show robust 
task-specific activation. These ROIs included the bilateral IFG for the SST, bilateral 
dlPFC for the EN-back task and bilateral AI for the MID task. To create the IFG 
ROI, we combined the pars orbitalis, triangularis and opercularis parcels from the 
aparc2009 FreeSurfer atlas70. To create the dlPFC ROI, we combined the bilateral 
middle frontal gyrus and the inferior frontal sulcus parcels from the same atlas.

Performance correlations. To assess the sensitivity of activation patterns 
to individual differences in behavioral performance, vertex and voxelwise 
whole-brain correlation analyses were calculated with PALM, with performance 
measures included as the independent variables in the design matrices and the 
same covariates as used above. In addition, beta weights were extracted from 
relevant ROIs known to show robust task-specific activation. These ROIs included 
bilateral inferior frontal and cingulate gyri for the SST and the bilateral dlPFC 
for the EN-back task. For the SST contrasts (correct Stop versus correct Go and 
incorrect Stop versus correct Go), Pearson’s correlation coefficients were computed 
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between beta weights and SSRT measures. For the 0-back versus fixation and 
2-back versus fixation contrasts of the EN-back task, whole-brain Pearson’s 
correlation coefficients were computed between beta weights and D′ measures 
derived from the 0-back and 2-back conditions, respectively. For the MID task, 
as its individualized adaptive algorithm does not yield a suitable performance 
measure directly assessing sensitivity to reward,

we went beyond the task performance measures (used with the SST and 
EN-back tasks) to search for correlates. We describe the relationship between  
MID activation and several measures assessing sensitivity to reward in 
Supplementary Note 6.

Group-level spatial reproducibility. To assess the spatial reproducibility of group 
activation maps and performance correlation maps (for the SST and EN-back 
task), we calculated the vertexwise/voxelwise correlation between a ‘gold standard’ 
map and independent samples of varying sizes. First, we split the participants into 
two equally sized independent groups, stratified by sex and scanner. Separately 
for each of the two groups, we calculated residualized beta weights according 
to a linear regression model fit on the following demeaned variables: age, sex, 
scanner serial number, race, puberty score and highest parent education. One 
group was designated the gold standard from which we calculated a single group 
activation map by computing the Cohen’s d measure of effect size from all its 
participants in addition to Pearson’s correlation coefficients between beta weights 
and performance measures. In the second group, we sampled random subsets, 
from n = 2 to n = 2,500 with 2,000 repetitions at each size, and generated a Cohen’s 
d activation map. Each subset was sampled from the entire second group. We 
calculated vertex/voxelwise Pearson’s correlation coefficients between each of 
these generated activation maps and the independent gold standard activation 
map. Average correlations by sample size were generated by computing the mean 
correlation over the 2,000 repetitions at each size. These calculations were applied 
to both cortical vertices and subcortical voxels. Python 3 was used to perform this 
analysis. The Python 3 codes are available in the ‘Supplementary Software’ linked 
to the article.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The ABCD Study anonymized data, including all assessment domains, are released 
annually to the research community. Information on how to access ABCD data 
through the NDA is available on the ABCD Study data-sharing webpage: https://
abcdstudy.org/scientists_data_sharing.html. Instructions on how to create an NDA 
study are available at https://nda.nih.gov/training/modules/study.html. The ABCD 
data repository grows and changes over time.
The ABCD data used in this report came from https://doi.org/10.15154/1520620. 
DOIs can be found at https://doi.org/10.15154/1520620. The ABCD data used in 
this report also came from the fast-track data release. The raw data are available 
at https://nda.nih.gov/edit_collection.html?id=2573. Activation maps and spatial 
reproducibility data are available in Supplementary Data 1 and 2, respectively.

Code availability
The Python codes used to compute reproducibility curves undertaken as part of 
this study and that generate the figures are openly available in the Supplementary 
Data and at https://github.com/sahahn/ABCD_Consortium_Analysis. The 
following additional software packages used for this study are freely and openly 
available: PALM (v.alpha116), https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM/.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection No software was used for data collection.

Data analysis Software used in the analyses are Permutation Analysis of Linear Models (PALM; version alpha116) and Python 3. An R script to remove 

Philips fMRI data from tabulated datais available at https://github.com/ABCD-STUDY/fMRI-cleanup. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 

We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

The ABCD Study anonymized data including all assessment domains is released annually to the research community. Information on how to access ABCD data 

through the NIMH Data Archive (NDA) is available on the ABCD study data sharing webpage: https://abcdstudy.org/scientists_data_sharing.html. Instructions on 

how to create an NDA study are available at https://nda.nih.gov/training/modules/study.html). The ABCD data repository grows and changes over time.  

The ABCD data used in this report came from 10.15154/1520620. DOIs can be found at https://dx.doi.org/10.15154/1520620. The ABCD data used in this report 

also came from the fast-track data release. The raw data are available at https://nda.nih.gov/edit_collection.html?id=2573.  
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The Adolescent Brain Cognitive Development Study (www.ABCDstudy.org) is a 10-year longitudinal study of 11,880 children recruited at ages 

9 and 10. This is the largest neuroimaging study ever conducted in the US. No sample size calculation was performed. Sample size included all 

participants with data surviving the exclusion criteria detailed below.

Data exclusions participants were included if they had 1) two fMRI runs per task, 2) cortical vertex and subcortical voxel data available at the time of analysis, 

3) hemispheric mean beta-weights within two standard deviations of the sample mean for each task, 4) at least 200 degrees of freedom over 

the two scan runs, 5) had mean framewise displacement < 0.9 mm for both runs, 6) met task-specific performance criteria, and 7) had 

complete information for covariates of interest (age, sex, scanner serial number, race, puberty (Peterson et al. 1988) and highest parent 

education).

Replication we report the spatial reproducibility of activation patterns by assessing between-group vertex/voxelwise correlations of BOLD activation as a 

function of sample size n. We calculated vertex/voxelwise Pearson’s correlation coefficients between each of these generated activation maps 

and the independent “gold standard” activation map. Average correlations by sample size were generated by computing the mean correlation 

over the 2,000 repetitions at each size. 

Randomization The ABCD study is a single cohort, observational and longitudinal design that has not randomization of participants to groups. The analyses in 

the current study used Permutation Analysis of Linear Models general linear model (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM/) to generate 

cortical and subcortical task-specific functional activation maps, contrasting the fMRI beta weights versus zero, with age (months), sex, 

scanner serial number, race, puberty and highest parent education included as nuisance covariates. The calculations accommodated the non-

independence of the participants by incorporating information on sibling status into the exchangeability blocks of the permutation analyses.

Blinding We used a single cohort longitudinal design and group analyses include all participant meeting inclusion criteria. Therefore, blinding was not 

relevant in our analyses. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants

Policy information about studies involving human research participants

Population characteristics ABCD adopted a population neuroscience approach to recruitment by employing epidemiologically informed procedures to 

ensure demographic variation in its sample that would mirror the variation in the US population of 9- and 10-year-olds. Samples 

used in the analyses were 50% males and 50% females overall.

Recruitment The ABCD sample was largely recruited through public, private, and charter elementary schools.  A probability sampling of 

schools was conducted within the defined catchment areas of the study’s nationally distributed set of 21 recruitment sites.

Ethics oversight The ABCD Study uses a single IRB that acts as the IRB of record for 19 of the 21 sites. This single IRB is located at the UCSD HRPP 

(Human Research Protections Program). Non-reliant sites obtained local IRB approvals. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Magnetic resonance imaging

Experimental design

Design type Event-related and block design task fMRI

Design specifications The Stop Signal Task (SST) had two runs. Each had 180 trials, of which 30 were “Stop” trials, yielding a total of 60 

“Stop” trials and 300 “Go” trials. Each trial lasted 1sec. The time between the “go” and “stop” 

signals (the Stop-Signal Delay; SSD) varied dynamically based on a participant’s success on the 

prior trial so as to achieve a 50% success rate (starting at 50 msec, the SSD increased by 50 msec 

if the participant successfully stopped on the previous trial, and decreased by 50 msec if he/she 

responded. 

The EN-back consisted of two runs, each containing eight blocks of trials and four 15 sec periods 

containing just a fixation cross. Blocks contained 10 trials lasting 2.5 sec each and were preceded 

by a 2.5 sec instruction screen indicating the condition for the upcoming block. Of the 10 trials in 

each block, 2 were targets, 2–3 were non-target lures, and the remainder were non-lures (i.e., 

stimuli only presented once). There are 160 trials in total with 96 unique stimuli of 4 different 

stimulus types (24 unique stimuli per type). 

The Monetary Incentive Delay (MID) task consists of twelve optimized trial orders of the task (2 runs each). Each run 

consists of 50 contiguous trials (10 per trial type) presented in pseudorandom order and lasts 5:42. The specific 

sequence of each trial was as follows: participants saw a cue denoting the trial type 

(2s), with “win” trials shown in a pink circle, “lose” trials shown in a yellow square, and “neutral” 

trials shown in a blue triangle. Then, participants viewed a fixation cross of jittered duration (1.5- 

4 sec), followed by a signal to respond, denoted by a black shape that corresponded to the trial 

type. The duration of the response signal varied between trials (0.15–0.5 sec), with the initial 

response target duration determined by the participant’s performance during a practice session 

prior to scanning.

Behavioral performance measures Task models included stimulus timing for each condition and linear contrasts of conditions. The 

SST model included regressors for successful go trials (“Correct Go”), failed go trials (“Incorrect 

Go”), successful stop trials (“Correct Stop”), and failed stop trials (“Incorrect Stop”), creating 

contrasts of interest Correct Stop vs Correct Go and Incorrect Stop vs Correct Go. The EN-back 

model included separate regressors for the 0-back faces, 2-back faces, 0-back places, and 2-back 

places conditions; the contrasts of interest were 0-back vs. Fixation, 2-back vs. Fixation, 2-back 

vs. 0-back, Faces vs. Places, negative vs neutral faces and positive vs neutral faces. The MID 

model contained separate regressors for the different anticipation periods (large and small rewards 

or losses and no incentive [“neutral”] trials) and large and small win and loss feedback. MID 

computed contrasts of interest were Large Reward versus Neutral Anticipation, small Reward 

versus Neutral Anticipation, Large Loss versus Neutral Anticipation, small Loss versus Neutral 

Anticipation, Reward Positive versus Negative Feedback, Loss Positive versus Negative 

Feedback. 

The SST used an adaptive algorithm to achieve a 50% success rate. To accomplish this, the onset 

between the GO and STOP signal was varied based on individual performance. Poor performance 

on the SST was determined by: fewer than 150 GO trials, less than 60% correct on GO trials, 

incorrect GO trials greater than 30%, late GO trials (across correct and incorrect trials) greater than 

30%, no response on GO trials greater than 30%, fewer than 30 STOP trials, and STOP trial 

accuracy lower than 20% or greater than 80%. The adaptive algorithm allowed for calculation of 

the Stop Signal Reaction Time (SSRT, the time required to inhibit the motor response; 2), which 

was used as the performance variable in analyses assessing individual differences in response 

inhibition ability. The SSRT was computed by subtracting the 

median stop signal delay of all successful stop trials from the nth percentile go reaction time, where 

n represents the percentage of successful inhibitions. Children with SSRT less than 50 msec were 

excluded from the analysis (n=3). 

For the EN-back, D’ was computed for both the 2-back and 0-back conditions by calculating each 

participant’s hit rate, the proportion of targets for which the participant correctly indicated a match, 

and false alarm rate, the proportion of non-targets for which the participant incorrectly indicated a 

match or did not respond. The hit and false alarm rates were then z-transformed. D’ was calculated 

as the z-transformed hit rate minus the z-transformed false alarm rate. Children were excluded 

from the analyses if D’ was less than 0. 

The MID task used an adaptive algorithm to maintain accuracy at 60%. To be included in the 

analysis, across the two runs, children had to have at least four events for each trial type, including 

positive and negative feedback.

Acquisition

Imaging type(s) Functional MRI

Field strength 3 Tesla

Sequence & imaging parameters High spatial and temporal resolution simultaneous multi-slice (SMS)/multiband EPI task-based fMRI scans, with fast 

integrated distortion correction, are acquired to examine functional activity. For Siemens and GE scanners, the scanning 

parameters were: matrix of 90 x 90, 60 slices, FOV= 216 x 216, TE/TR (msec) = 800/30, flip angle= 52 degrees, and  
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resolution (mm) = 2.4 x 2.4 x 2.4. 

Area of acquisition Whole brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software We used a collection of processing steps contained within the Multi-Modal Processing Stream (MMPS), a software 

package developed and maintained in-house at the Center for Multimodal Imaging and Genetics (CMIG) at the 

University of California, San Diego (UCSD) that provides large-scale, standardized processing and analysis of 

multimodality neuroimaging data on Linux workstations and compute clusters. For ABCD Release 2.0.1, MMPS version 

251 was used. This toolbox contains primarily MATLAB functions, as well as python, sh, and csh scripts, and C++ 

compiled executables and relies upon a number of publicly available neuroimaging software packages, including 

FreeSurfer (Fischl, 2012), Analysis of Functional NeuroImages (AFNI) (Cox, 1996), and FMRIB Software Library (FSL) 

(Jenkinson et al., 2012; Smith et al., 2004).  

Estimates of task-related activation strength are computed at the individual subject level using a general linear model 

(GLM) implemented in AFNI’s 3dDeconvolve (Cox, 1996). Hemodynamic response functions are modelled with two 

parameters using a gamma variate basis function plus its temporal derivative (using AFNI’s ‘SPMG’ option within 

3dDeconvolve). Task models include stimulus timing for each condition and linear contrasts of conditions. For MID and 

SST analyses, events are modelled as instantaneous; for EN-back, the duration of cues (~3s) and trial blocks (~24s) are 

modelled as square waves convolved with the two parameter gamma basis function (i.e., block duration specified when 

using AFNI’s ‘SPMG’ option). Outputs include GLM beta coefficients and standard errors of the mean (SEM; calculated 

from the ratio of the beta and t-statistic) calculated for each voxel and vertex). 

Cortical surface reconstruction and subcortical segmentation are performed using FreeSurfer v5.3. 

Normalization For vertex-wise analyses, surfaces were nonlinearly registered surface atlas based on cortical folding patterns with 

FreeSurfer. For voxel-wise analyses, T1w images were registered to atlas using affine and nonlinear registration with 

FSL's flirt and fnirt, respectively.

Normalization template The template for surface-based registration was standard FreeSurfer average brain surface spherical atlas. 5 mm FWHM 

surface-based smoothing was applied before resampling to atlas. The Template for voxel-wise registration was FSL's 

T1_2_MNI152_2mm. 5 mm FWHM volume-based smoothing was applied before resampling to atlas.

Noise and artifact removal Baseline and quadratic trends in the time-series data are included in the analysis. Motion estimates and their derivatives 

are also included as regressors (Power et al., 2014). Estimated motion time courses used for regression and censoring 

are temporally filtered using an infinite impulse response (IIR) notch filter to attenuate signals in the range of 0.31 - 0.43 

Hz. This frequency range corresponds to empirically observed oscillatory signals in motion estimates linked to 

respiration and the dynamic changes in magnetic susceptibility due to lung movement in the range of 18.6 - 25.7 

respirations / minute. With the removal of these fast oscillations linked to respiration, the filtered motion estimates and 

FD values more accurately reflect actual head motion (Fair et al., 2018).

Volume censoring Time points with FD greater than 0.9 mm were censored (Siegel et al., 2014). 

Statistical modeling & inference

Model type and settings Mass univariate and Pearson correlation analyses were carried-out with the nuisance covariates mentioned above 

included in the design matrices 

Effect(s) tested - Cohen's d effect size for task-fMRI BOLD activation 

- Pearson's Correlation coefficients between task-fMRI BOLD and performance measures

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s) Anatomical Destrieux cortical atlas was used

Statistic type for inference
(See Eklund et al. 2016)

For this descriptive study only effect sizes were reported. No statistic inference was applied.

Correction See above.

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis
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