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is present in term- and prematurely-born infants. Application of new analytical approaches can help translate the
improved understanding of early functional connectivity provided through these studies into predictive models
of neurodevelopmental outcome. One approach to achieving this goal is multivariate pattern analysis, a machine-
learning, pattern classification approach well-suited for high-dimensional neuroimaging data. It has previously

Keywords: . . o . . )
Developmental neuroimaging been adapted to predict brain maturity in children and adolescents using structural and resting state-
Functional MRI functional MRI data. In this study, we evaluated resting state-functional MRI data from 50 preterm-born infants

Infant (born at 23-29 weeks of gestation and without moderate-severe brain injury) scanned at term equivalent
Prematurity postmenstrual age compared with data from 50 term-born control infants studied within the first week of life.
Multivariate pattern analysis Using 214 regions of interest, binary support vector machines distinguished term from preterm infants with
84% accuracy (p < 0.0001). Inter- and intra-hemispheric connections throughout the brain were important for
group categorization, indicating that widespread changes in the brain's functional network architecture associat-
ed with preterm birth are detectable by term equivalent age. Support vector regression enabled quantitative es-
timation of birth gestational age in single subjects using only term equivalent resting state-functional MRI data,
indicating that the present approach is sensitive to the degree of disruption of brain development associated with
preterm birth (using gestational age as a surrogate for the extent of disruption). This suggests that support vector
regression may provide a means for predicting neurodevelopmental outcome in individual infants.
© 2016 Elsevier Inc. All rights reserved.

Introduction

Resting state-functional magnetic resonance imaging (rs-fMRI) has
been increasingly applied to study functional network development in
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Neurological Institute.
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infants (Doria et al,, 2010; Fransson et al., 2009, 2007; Lin et al., 2008;
Smyser et al., 2010). Despite differences in study populations and anal-
ysis methods, multiple studies have now consistently shown that
infants demonstrate resting state networks (RSNs) similar to those
which compose the canonical, large-scale functional network architec-
ture supporting motor, sensory and cognitive functions in older pediat-
ric and adult populations. During the neonatal period, these RSNs
demonstrate differing rates of development which reflect known pat-
terns of cortical maturation based upon histological investigations
(Gao et al., 2014; Smyser et al., 2016). Recently, quantitative methodol-
ogy revealed group-level differences in intrinsic brain activity within
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these RSNs during the neonatal period due to prematurity (Smyser
et al., 2016). These findings suggest that functional network develop-
ment is altered during the critical period of brain development prior
to term equivalent postmenstrual age (PMA; i.e., 38-40 weeks) during
which significant brain growth and folding are typically occurring.
However, the role of alterations in these RSNs in determining
neurodevelopmental outcomes remains incompletely understood, as
are the clinical factors associated with these changes. Application of
novel analytical approaches is an important step in translating our im-
proved understanding of early functional connectivity into predictive
models of neurodevelopmental outcome applicable in individuals.

Support vector machine (SVM)-multivariate pattern analysis
(MVPA) is a machine-learning, pattern classification method that can
be used to investigate complex patterns in high-dimensional neuroim-
aging data (Dosenbach et al., 2010; Pereira et al., 2009; Scholkopf and
Smola, 2002; Smola, 2004). This technique is well-suited to accommo-
date and analyze large, multi-dimensional neuroimaging data sets,
identifying data-driven decision boundaries which can be used to max-
imally separate populations of interest while identifying features within
these data most important for discriminating between groups. This
brain-wide approach provides a conceptual shift for the functional neu-
roimaging field, contextualizing results obtained through investigations
focused on specific areas of the brain, while increasing the likelihood of
identifying population differences by investigating much larger num-
bers of brain regions in comparison to currently employed univariate
models. It has been employed to investigate brain-wide patterns of
functional and structural connectivity, creating classifiers which differ-
entiate groups with high accuracy and identifying connections critical
for distinguishing clinical populations based upon age and diagnosis
such as Alzheimer's disease, autism spectrum disorder, addiction,
schizophrenia and obsessive-compulsive disorder (Brown et al., 2012;
Ecker et al., 2010; Erus et al., 2014; Fair et al., 2012; Franke et al.,
2012; Li et al.,, 2014; Magnin et al., 2009; Meier et al., 2012; Pariyadath
et al., 2014; Robinson et al., 2010; Rosa et al,, 2015; Shen et al., 2010;
Vergun et al., 2013). Importantly, these methods can be extended to
SVM regression (SVR) to enable quantitative predictions in individuals
for variables such as chronological age or developmental status
(Pereira et al.,, 2009; Smola, 2004). Recently, investigators have used
this technique to develop predictive models of brain maturity in indi-
vidual subjects across pediatric and adult populations (Franke et al.,
2012; Satterthwaite et al., 2014; Vergun et al.,, 2013).

Here, we apply SVM methodology to infant rs-fMRI data. We studied
50 preterm infants born at 23-29 weeks of gestation and without mod-
erate-severe injury on structural imaging at term equivalent PMA
(hereafter referred to as “preterm-born infants”) and 50 healthy,
term-born control infants (hereafter referred to as “term-born infants”).
Low motion rs-fMRI data were available for all subjects. Using rs-fMRI
correlation matrices constructed using 214 cortical and subcortical
gray matter regions of interest (ROIs) which delineated the functional
connections (i.e., features) between each ROI pair, binary SVMs were
used to categorize infants as term-born or preterm-born at the group
level based upon birth gestational age (GA). To investigate the effects
of prematurity on network architecture, the SVM classification vectors
were extracted to identify the functional connections between regions
critical for accurate group classification, providing an indication of
which connections are altered in preterm infants at term equivalent
PMA. We also evaluated the effects of potential modifiers on SVM re-
sults, including sex, race, PMA at scan, head size and motion param-
eters. To explore the potential utility of rs-fMRI data to predict
neurodevelopmental outcome, the data were analyzed using SVR.
Using GA at birth as an indicator of the degree of disruption of nor-
mal brain development in preterm infants, we developed models to
estimate an infant's GA at birth based upon rs-fMRI data collected
at term equivalent PMA. Such an SVR-derived estimate could provide
a measure with which to predict neurodevelopmental outcome in in-
dividual infants from single data sets in this high-risk population.

Materials and methods
Subjects

Preterm infants born prior to 30 weeks of gestation were prospec-
tively recruited from the St. Louis Children's Hospital Neonatal Intensive
Care Unit (NICU). Term-born infants were recruited from the Barnes-
Jewish Hospital Newborn Nursery. All term-born infants had no history
of in utero illicit substance exposure and no evidence of acidosis
(pH > 7.20) on umbilical cord or arterial blood gas assessments during
the first hour of life. In both groups, infants were excluded if found to
have chromosomal abnormality or suspected or proven congenital in-
fection (e.g., HIV, sepsis, toxoplasmosis, rubella, cytomegalovirus and
herpes simplex virus). Parental informed consent was obtained for
each subject prior to participation in the study.

Anatomic MR images and cranial ultrasounds (if available) for all
subjects were reviewed by a neuroradiologist (].S.) and pediatric neu-
rologist (C.S.). Infants were excluded from the study if abnormalities, in-
cluding grade III-1V intraventricular hemorrhage, cystic periventricular
leukomalacia, moderate-severe cerebellar hemorrhage or lesions in the
deep or cortical gray matter, were detected. All aspects of the study
were approved by the Washington University School of Medicine's
Human Studies Committee.

The preterm-born group was comprised of 50 infants with a mean
GA of 26 weeks (+ 2, range 23-29 weeks). Twenty-four infants were fe-
male and 23 were African-American. The preterm-born infants were
scanned at a mean PMA of 38 weeks (41, range 36-41 weeks). The
timing of scan acquisition for these subjects was determined by clinical
status and medical course. Additional demographic and clinical infor-
mation for the preterm-born cohort is provided in Table 1.

The term-born group included 50 infants. For this group, the mean
GA at birth was 39 weeks (41, range 37-41 weeks) with a mean PMA
at scan of 39 weeks (41, range 37-41 weeks). Twenty-three infants
were female and 31 were African-American.

Data acquisition

Term-born infants underwent MRI within the first four days of life.
Preterm-born infants underwent MRI at term equivalent PMA. Infants
were imaged without sedation during natural sleep or while resting
quietly with eyes closed (Mathur et al., 2008). Noise protection during
scanning was provided by ear muffs (Natus Medical, Foster City, CA). Ar-
terial oxygen saturation and heart rate were continuously monitored
throughout acquisition. A NICU staff member was present in the scanner
room throughout the study.

Imaging was performed using a Siemens Trio 3T scanner (Erlangen,
Germany) and an infant-specific, quadrature head coil (Advanced Imag-
ing Research, Cleveland, OH). Structural images were collected using a
T2-weighted sequence (TR 8600 ms; echo time 161 ms; voxel size
1 x 1 x 1 mm?; echo train length 17). rs-fMRI data were collected utiliz-
ing a gradient echo, echo-planar-image (EPI) sequence sensitized to T2*
BOLD contrast (TR 2910 ms; echo time 28 ms; voxel size
2.4 x 2.4 x 2.4mm>; flip angle 90°). Whole brain coverage was obtained
with 44 contiguous slices. Each rs-fMRI run included 200 volumes
(frames). A minimum of one run (9.7 min) was obtained in each infant.
Additional runs were acquired in a subset of participants depending
upon subject tolerance.

Data analysis

rs-fMRI preprocessing

rs-fMRI data were preprocessed as previously described (Smyser
et al,, 2016). These procedures were implemented using the local 4dfp
suite of tools (ftp://imaging.wustl.edu/pub/raichlab/4dfp_tools/). Brief-
ly, this included correction for asynchronous slice timing and rigid body
correction of head movement. In addition, EPI distortions in the BOLD
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Table 1

Demographic information for term and preterm subjects.
Clinical variable Number of preterm infants (n = 50) Number of term infants (n = 50) p value
Gestational age at birth (weeks) — mean (SD) 26 (2) 39 (1) <0.0001*°
Female — n (%) 24 (48) 23 (46) 0.841°
African-American — n (%) 23 (46) 31 (62) 0.224°
Postmenstrual age at scan (weeks) — mean (SD) 38 (1) 39 (1)
Birth weight (g) — mean (SD) 896 (242)
Multiple gestation — n (%) 21 (42)

Intrauterine growth restriction — n (%) 3(6)

Antenatal steroids — n (%) 44 (88)
Inotropic support — n (%) 15 (30)
Postnatal steroids — n (%) 12 (24)
Positive pressure ventilation — n (%) 41 (82)

Total positive pressure days — mean (SD) 11 (14)

Total ventilator days — mean (SD) 13 (22)
Total parenteral nutrition (days) — mean (SD) 27 (23)
Patent ductus arteriosus treated medically — n (%) 24 (48)

2 Result from two-sample, two-tailed t-test.
b Result from chi-square test.

data were corrected using the FUGUE module in FSL (Jenkinson et al.,
2012). Individual magnetization field maps were not acquired in all sub-
jects. Therefore, magnetization inhomogeneity-related distortions were
corrected using a mean field map technique (Gholipour et al., 2008). T2-
weighted images were aligned with a postmenstrual age-specific infant
target to account for differences in cerebral volume and shape between
infants and adults (Smyser et al., 2010). Affine transform to register the
rs-fMRI first frame with the corrected T2-weighted image was then cal-
culated. The volumetric time series were then realigned to the represen-
tative adult template in Talairach atlas space used at the Washington
University Neuroimaging Laboratory, combining motion correction
and atlas transformation in a single re-sampling step, producing
3 x 3 x 3 mm?> voxels.

Additional preprocessing to reduce artifact in preparation for rs-
fMRI analyses included removal by regression of nuisance waveforms
derived from rigid body motion correction, regions in cerebrospinal
fluid and white matter, plus the global signal averaged over the whole
brain (Power et al., 2014, 2015). The data were passed through a tempo-
ral low pass filter retaining frequencies below 0.08 Hz and spatially
smoothed (6 mm full-width at half-maximum in each direction). We
employed rigorous frame censoring criteria: frames corrupted by mo-
tion were identified by analysis of the fully preprocessed volumetric
time series (Power et al., 2014). Frames affected by sudden change in
head position (framewise displacement >0.5 mm) or root mean
squared BOLD signal intensity change (DVARS >0.5%) were excluded
from the rs-fMRI computations (“scrubbing”). A minimum of 5 min of
fMRI data, excluding motion censored frames, was required for subject
inclusion, with all subjects not meeting this criterion excluded.

To control for potential biases attributable to differing amounts of
data included per group, for all term and preterm subjects only the
first 100 frames (corresponding to ~5 min) of low-motion rs-fMRI
data passing the motion scrubbing parameters delineated above were
included in the analysis, with exclusion of all other data for each subject.
This procedure ensured that an identical amount of data was analyzed
both for each subject and each cohort.

ROl selection

Following transformation of the infant data to adult Talairach atlas
space, ROIs (n = 264) in cortical and subcortical gray matter regions
were selected using coordinates identified from task data and cortical
functional areal parcellations obtained in typical adults (Cohen et al.,
2008; Power et al., 2011). Each ROI was a 10-mm diameter sphere
centered upon Talairach atlas coordinates. To identify ROIs erroneously
placed outside gray matter regions, two procedures were undertaken.
First, mean values were measured within each ROI from each subject's
Talairach atlas space-registered BOLD data. Second, three viewers
(authors C.S. and T.S. and collaborator J.K.) independently visually

inspected each ROI location overlaid on the T2-weighted infant data
transformed into Talairach atlas space. Using these procedures, 50
ROIs were identified to either have mean BOLD measures outside the
typical range for gray matter or be located outside the whole brain
mask and/or anticipated gray matter regions. When the initial assess-
ments were discrepant (<2% of all ROIs), a consensus was reached
among the viewers. These ROIs were subsequently removed, leaving
214 remaining ROIs (Fig. 1). Pairwise Pearson correlation values were
generated between the BOLD time series for each ROI with every
other ROI generating a square rs-fMRI matrix (214 x 214) for each sub-
ject. This approach resulted in 22,791 interregional correlations for each
subject. Correlation coefficients were then Fisher z-transformed to en-
sure normality (Jenkins and Watts, 1968). ROI assignments by network
in adults (Power et al., 2011) and centers for all ROIs are reported in
Supplemental Tables 1 and 2.

Support vector machine analyses

The SVM methods employed were adapted from the existing litera-
ture (Ben-Hur et al., 2008; Kohavi, 1995; Pereira et al., 2009; Smola,
2004). These procedures included t-test filtering to include only reliably
different features, linear kernel separation and soft margin separation.

A

Fig. 1. Cortical, subcortical and cerebellar regions of interest (ROIs) used in the present
analyses. Two hundred and fourteen gray matter ROIs assigned to 13 resting state
networks in adults (Power et al., 2011) were selected based upon anatomic location
from an ROI set derived from task data and cortical functional areal parcellations in
adults. Anterior (A), dorsal (B), right (C) and left (D) lateral views presented. ROIs are
overlaid on a neonate-specific atlas image.
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Leave-one-out-cross-validation (LOOCV), which is widely used in ma-
chine learning approaches and provides a good estimate of each
classifier's or predictor’s true accuracy, was used to estimate group clas-
sification (SVM) and prediction (SVR) accuracies. In LOOCV, each sam-
ple is designated as the test sample once. Subsequently, there are as
many folds (i.e., rounds of cross-validation) as samples. All SVM compu-
tations were conducted using the Spider MATLAB Machine-Learning
Toolbox (http://www.kyb.tuebingen.mpg.de/de/bs/people/spider) im-
plemented in MATLAB version 7.8.0 (R2009a; The MathWorks, Natick,
MA). The MATLAB Bioinformatics, Curve-Fitting and Statistics Tool-
boxes and in-house MATLAB code were also utilized.

For each subject, each pairwise z(r) value (i.e., functional connec-
tion) was defined as a feature for use by the classifier. For SVM classifi-
cation, 22,791 two-sided t-tests (assuming unequal variance) were
performed in each LOOCV fold. Within each fold, features were ranked
by absolute t-score in descending order (the subject tested by the
trained machine was also left out of the t-test filtering for that
LOOCV). To improve computation speed and performance and follow-
ing well-established, standard procedures, only the top 180 features
that most reliably differed between groups were retained for classifica-
tion. Based upon inspection of LOOCV results across higher thresholds,
this feature-filtering number provides maximum relative discriminato-
ry power while avoiding circularity bias (Dosenbach et al,, 2010).

For SVR prediction, the correlation of each of the 22,791 features
with the independent training variable (i.e., GA) was computed on
each LOOCV fold. For each fold, features were similarly ranked by the
absolute value of the correlation coefficients with the training variable
in descending order (again with the subject tested by the trained ma-
chine left out of the t-test filtering for that LOOCV), with the top 180
similarly retained for prediction (Dosenbach et al., 2010).

On every fold of the LOOCV for both approaches, feature combina-
tions may be different because every fold differs slightly. Features that
were retained across folds were termed consensus features. Those
contained in 100% of the folds (i.e., 100% consensus features) were
used to construct visualizations of ROIs and functional connections
using CARET version 5.65 (Van Essen et al., 2001). ROI weights were
computed by summing across all functional connections for each ROL
Extracted feature weights were averaged over all folds.

A B

Fig. 2. Regions of interest (ROIs) important for differentiating term-born and preterm-
born subjects using binary SVMs. Node colors represent assignment to resting state
networks in adults (Power et al., 2011). Black = cingulo-opercular, red = default mode,
yellow = frontoparietal, dark blue = cerebellum, green = visual, cyan = somatomotor,
yellow-green = lateral somatomotor, dark cyan = dorsal attention, purple =
subcortical, gray = ventral attention, brown = unnamed 1, and white = unnamed 2.
Note distribution of ROIs throughout the brain and across multiple networks. Anterior
(A), dorsal (B), right (C) and left (D) lateral views presented. ROIs are overlaid on a
neonate-specific atlas image.

An SVM classifier was initially constructed based upon subject GA
(term-born versus preterm-born). To investigate whether the accuracy
of the term-born versus preterm-born categorization was driven by dif-
ferences between groups in sex, race, PMA at scan, atlas scaling and mo-
tion parameters, additional SVM classifiers were created. For binary
variables, SVMs were constructed using only data acquired from sub-
jects within the term and preterm groups restricted to a single demo-
graphic category (e.g., only male subjects). For continuous variables
(e.g., motion parameters), the 50 term subjects were divided into two
equal groups of 25 subjects with values above and below the median
measure for the variable of interest. Comparable analyses were also per-
formed using only data from preterm-born infants. For SVR prediction,
investigated training variables included GA, framewise displacement
and DVARS values.

Reported SVM results include classifier accuracy, sensitivity, speci-
ficity and p-values for binomial probabilities. Sensitivity is defined as
the percent of correctly classified term-born infants within all term-
born infants. Specificity is defined as the percent of correctly classified
preterm-born infants within all preterm-born infants (i.e., those cor-
rectly identified as not term-born). The p-values represent the probabil-
ity of observing the reported accuracy (number of correct classification
trials) by chance based upon the binomial distribution for the given
sample size.

Results
SVM term vs preterm classification

Using rs-fMRI matrices of functional connections between ROIs, bi-
nary SVMs reliably classified term-born versus preterm-born infants
studied at term equivalent PMA with 84% accuracy, 90% sensitivity
and 78% specificity (p < 0.00001). The ROIs that formed the functional
connections which contributed to accurate group classification are lo-
cated throughout the brain and are illustrated in Fig. 2 (also see Supple-
mental Fig. 1). In adults, these ROIs would populate 13 of the 14
networks from Power et al. (2011), most frequently including ROIs
from the default mode, cingulo-opercular, somatomotor, visual, dorsal
attention and salience networks. Removal of the ten ROIs that had the
functional connections with the greatest classification power did not
substantively affect the binary SVM's ability to differentiate preterm-
born and term-born subjects (75% accuracy, 80% sensitivity, 70% speci-
ficity, p < 0.00001).

In these analyses, 126 consensus features for group differentiation
were identified. Fig. 3 illustrates these consensus functional connections
scaled by the extracted weighting assigned to each feature (green con-
nections stronger in term-born infants, orange stronger in preterm-
born infants). Included are intra- and inter-hemispheric connections lo-
cated throughout the brain. The predominance of both within and be-
tween network consensus features was greater in term-born infants
(69% versus 31%). Between network features contributed more fre-
quently to accurate classification than within network features (82%
versus 18%). Contributing within network features most prominently in-
cluded the default mode, cingulo-opercular, dorsal attention and visual
networks. The mean Euclidean distance in stereotaxic space for term
contributing features (green connections) was 51.8 + 30.0 mm. For
preterm contributing features (orange connections), the mean distance
was 51.6 4+ 27.8 mm. These distance measures were not different be-
tween groups (p = 0.98). In addition, feature distance did not correlate
with weighting (p = 0.12).

Despite smaller subject numbers, SVM classifiers including only data
from term and preterm subjects categorized based upon binary vari-
ables (e.g., only male subjects) demonstrated classification ability con-
sistent with the larger group analysis (Table 2). Features important for
group differentiation were generally similar across classifiers and con-
sistent with the classifier generated using all data. In contrast, binary
SVMs created using only data from term-born infants divided according
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B

with GA

Fig. 3. Consensus features important for differentiating term-born and preterm-born
subjects using binary SVMs. One hundred and twenty-six consensus features (100%
overlap across all cross-validation folds) distinguished term-born and preterm-born
subjects with 84% accuracy. Features are scaled by their weights, which denote their
relative importance in group differentiation. Green lines denote functional connections
stronger in term-born subjects, whereas orange lines denote functional connections
contributing to preterm classification. Note distribution of features throughout the brain.
Anterior (A), dorsal (B), right (C) and left (D) lateral views presented. Features are
overlaid on a neonate-specific atlas image.

to the median value of continuous variables (e.g., motion parameters)
failed to differentiate groups accurately. Comparable analyses using
only data from preterm-born infants also failed to differentiate groups.
These results suggest the investigated variables did not drive group dif-
ferentiation. In addition, due to differences in PMA at scan between the
term and preterm groups, a SVM classifier was created using only data
from the oldest 25 preterm subjects and youngest 25 term subjects
(mean preterm scan age 39 &+ 1 weeks and mean term scan age 38 +
1 weeks; n.b., preterm > term in contrast to the analysis using all sub-
jects). This analysis also accurately classified term and preterm subjects
(accuracy 82%, sensitivity 88%, specificity 76%, p < 0.00001).

Finally, to further mitigate any potential confounding effects present
due to subject motion during data acquisition, SVM analysis was also
performed using only the 35 subjects from each group with 5 min of
data passing more stringent motion criteria than those detailed above
(“super scrubbing”; frame exclusion criteria framewise displacement
>0.25 mm or DVARS >0.3%). Classification results were again similar
to those obtained using all subjects, with 108 consensus inter- and
intra-hemispheric features within and between RSNs important for
group categorization (accuracy 80%, sensitivity 83%, specificity 77%,
p < 0.00001; see also Supplemental Fig. 2).

Table 2
Binary SVM results for subjects categorized by demographic, clinical and technical
variables.

Group Accuracy Sensitivity  Specificity

Variable size %) %) %) p value
All subjects 50 84 90 78 <0.00001
Sex — male 26 83 88 78 <0.00001
Race — AA 23 76 83 70 0.0002
Scan PMA 25 82 88 76 <0.00001
Atlas scale — term 25 56 60 52 0.08
Atlas scale — preterm 25 48 52 44 0.11
RMS — term 25 52 52 52 0.11
RMS — preterm 25 54 60 48 0.08
Super scrubbing 35 80 83 77 <0.00001

SVR birth gestational age prediction

Using GA at birth as the training measure, SVR was used to make
quantitative predictions of GA at birth in individual infants based
upon the single rs-fMRI data sets collected at term equivalent PMA. In
this analysis, 118 consensus features were identified, with location
and weighting comparable to results obtained in the SVM group analy-
sis (Supplemental Figs. 3 and 4). Again, connections within and be-
tween networks located throughout the brain were typically greater
in term-born infants. As expected, predicted birth GA values were typi-
cally greater in term (36 4 4 weeks) than preterm (30 + 4 weeks) in-
fants based upon individual data sets, differentiating the two infant
groups (p < 0.00001). Use of a linear model to fit these data illustrated
that higher birth GA led to prediction of greater connectivity measures
at term equivalent (r = 0.61, p < 0.00001) (Fig. 4). The model per-
formed comparably for both infant groups. Differences in the absolute
value between the actual GA at birth and the SVR-estimated GA at
birth were calculated for each infant and averaged across groups. For
both groups, the mean difference between actual and SVR-estimated
GA measures was 4 weeks (p = 0.98).

Discussion
Summary of findings

Binary SVMs applied to rs-fMRI data reliably categorized term-born
and preterm-born infants at term equivalent PMA. Inter- and intra-
hemispheric functional connections throughout the brain that were im-
portant for group categorization were typically stronger in infants born
at term. Model accuracy was not driven by group differences in sex,
race, PMA at scan, atlas scaling or motion parameters. Extension to
SVR enabled quantitative predictions of GA at birth in individual sub-
jects from both groups that were correlated with actual GA at birth.
These findings illustrate brain-wide alterations of functional cerebral
development for preterm-born infants at both the group and individual
level by term equivalent, extending prior reports in this population
(Damaraju et al., 2010; Smyser et al., 2010, 2016). Importantly, the abil-
ity of SVR to predict GA at birth indicates that this approach is sensitive
to the extent of disruption of brain development associated with the de-
gree of prematurity at birth. Thus, this approach has the potential to be
used to determine a brain maturity index at term equivalent for individ-
ual infants, which may assist in presymptomatic prediction of later
neurodevelopmental outcomes.

Relation to prior multivariate pattern analysis (MVPA) studies

The power of MVPA lies in its capacity to incorporate large amounts
of information to develop classification models. When applied to neuro-
imaging data, MVPA leverages information extracted from regions
across the brain, removing artificial restrictions to specific connections,
regions or networks common in prior functional neuroimaging investi-
gations (Norman et al., 2006; Pereira et al., 2009; Pruett et al., 2015;
Smola, 2004). This brain-wide approach is resistant to overfitting
while enabling less robust, spatially distributed data to cumulatively
contribute to results (i.e., many connections weakly associated with
group classification collectively create a powerful model) (Pruett et al.,
2015; Satterthwaite et al., 2014).

These inherent attributes have recently led to rapid expansion in the
use of machine-learning classifiers to analyze neuroimaging data, and
the methods have been applied to investigate changes associated with
normal development, aging and clinical diagnoses such as autism,
Alzheimer's disease, schizophrenia, addiction and obsessive-compul-
sive disorder (Brown et al., 2012; Ecker et al., 2010; Erus et al., 2014;
Fair et al., 2012; Franke et al., 2012, 2010; Li et al., 2014; Magnin et al.,
2009; Pruett et al., 2015; Satterthwaite et al., 2014). Each investigation
has reported a strong ability to differentiate clinical populations from
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Fig. 4. Support vector regression results depicting actual (x-axis) versus predicted (y-axis) gestational age (GA) for term-born and preterm-born infants determined using individual term
equivalent rs-fMRI data sets (preterm-born infants = circles, term-born infants = squares). Note the delineation in predicted gestational age values between infants within each group,
reflecting differences in functional connectivity measures between term and preterm subjects scanned at comparable postmenstrual age.

control subjects (typically >80% accuracy with some rates as high as
95%) using structural, diffusion, task-based or resting state MRI data.
Model accuracy is improved when combining data obtained across
complementary imaging modalities (Brown et al., 2012; Erus et al.,
2014). The approach is well-suited to the study of increasingly diverse
subject groups, ranging from infant (Pruett et al., 2015) to geriatric pop-
ulations (Vergun et al., 2013). In addition, the ability to extract informa-
tion regarding the relative importance of both connections and nodes
via feature weights highlights changes within specific regions and/or
networks attributable to age or disease. Extension of this methodology
to SVR has enabled development of models that can predict individual
age and performance (Erus et al., 2014; Vergun et al., 2013). The hetero-
geneity across these studies illustrates the power and adaptability of
this technique.

Relation to prior infant rs-fMRI investigations

Our investigation capitalizes upon the benefits of MVPA to extend
prior neonatal rs-fMRI investigations of infants (Doria et al., 2010;
Fransson et al., 2009, 2007; Gao et al., 2014; Lin et al., 2008; Smyser
et al,, 2010, 2016). Recently, intrinsic fMRI activity was found to be
quantitatively reduced and have decreased complexity in preterm-
born infants (Smyser et al., 2016). Our results validate and expand
upon these findings at the group level and extend them to the individual
subject level, with the consistency and pattern of feature weights illus-
trating the scope and scale of the effects of prematurity. Importantly,
our SVM models retained sufficient power to differentiate term-born
and preterm-born neonates despite targeted removal of ROIs with func-
tional connections of the greatest relative classification power. This sug-
gests that differences in functional connectivity between these groups
are not dependent upon small numbers of regions or features, though
some may carry greater importance in distinguishing neonatal
populations.

Consensus features for both SVM and SVR were widely distributed,
incorporating functionally defined ROIs from the default mode,
cingulo-opercular, somatomotor and dorsal attention networks
(Cohen et al., 2008; Power et al., 2011). Summing weights and
performing RSN-specific analyses revealed that both early maturing
motor and sensory networks and higher-order RSNs, such as the default
mode, cingulo-opercular, dorsal attention and salience networks, con-
tributed to successful categorization. These higher-order RSNs have
been shown to develop more slowly than motor and sensory networks
during this developmental period, following known rates of cortical
maturation and shaped by the complex interplay of intrinsic activity
and external stimuli (Ferradal et al., 2015; Gao et al., 2014; Smyser
etal, 2016). The patterns of decreased correlation strength demonstrat-
ed in preterm-born infants suggest that functional connections
throughout the brain are disturbed by the time of discharge from the
NICU and occur even without significant brain injury. A growing body
of evidence suggests that the immature brain may be susceptible to del-
eterious deprivation (e.g., inadequate nutrition, minimal auditory expo-
sure) and/or noxious exposures (e.g., noxious stimuli, medications)
inherent to the NICU environment (Brummelte et al., 2012; Caskey
et al.,, 2014; Dabydeen et al., 2008; Ferguson et al., 2012; Pineda et al.,
2014; Smith et al., 2011).

Neurodevelopmental implications

Preterm children face a range of neurodevelopmental and neurobe-
havioral challenges, with those born earliest facing disproportionate
risk (Marlow et al., 2005; Saigal and Doyle, 2008; Woodward et al.,
2009). Prior investigations have characterized the alterations in cerebral
gray and white matter development associated with preterm birth
using conventional MRI (Inder et al., 2005; Miller et al., 2005;
Woodward et al., 2006). However, comparable studies employing rs-
fMRI have been limited in number and scale, with few studies focused
upon infancy (Damaraju et al., 2010; Doria et al., 2010; Fransson et al.,
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2007; Smyser et al., 2010). These investigations have demonstrated
group differences in quantitative comparisons of term-born and
preterm-born infants. The etiology of these differences remains un-
known, though it is suspected that an amalgam of common NICU expo-
sures contributes individually or cumulatively to these alterations in rs-
fMRI measures (Ball et al., 2010; Brummelte et al., 2012; Chau et al.,
2012; Ferguson et al., 2012; Smith et al., 2011). Importantly, there is ev-
idence that intrinsic cortical and subcortical neuronal activity is critical
for early brain development (Katz and Crowley, 2002), and that affected
RSNs play critical roles in cognitive, motor and language function in
adults (Fox and Greicius, 2010). Subsequently, these connectivity differ-
ences may correlate with the neurodevelopmental deficits common in
preterm-born infants (Burton et al., 2009; Posner et al., 2014; Redcay
etal, 2013).

It is important to note that SVM only successfully differentiated in-
fants using birth GA as the variable of interest. Targeted investigation
revealed no differences in this same cohort of infants separated using
sex, race, PMA at scan, atlas scaling and motion parameters, some of
which are important determinants of neurodevelopmental outcomes
among prematurely-born infants. Therefore, in this model, this observa-
tion places degree of prematurity as the most powerful variable in de-
termining functional brain network development among very preterm
infants without significant cerebral injury, just as it is one of the most
powerful variables in determining long-term neurodevelopmental out-
comes (Marlow et al., 2005). Thus, our findings suggest that aberrant
functional connectivity may be a critical factor in mediating down-
stream neurodevelopmental disability.

The finding that SVR analysis of rs-fMRI data at term equivalent can be
used to identify degree of prematurity (GA at birth) provides proof of
principle that rs-fMRI data may play a role predicting neuro-
developmental outcome. GA at birth was used as an indicator of the de-
gree of disruption of brain development present at term equivalent
PMA for this study, assuming that, on average, greater degrees of prema-
turity are associated with greater degrees of disruption of brain develop-
ment. The capacity of SVR to estimate birth GA raises the possibility of
developing a “maturity index”, such as an index based on the SVR-
estimated GA at birth obtained at term equivalent PMA. If such a measure
proves to be associated with neurodevelopmental outcome, then quanti-
tative imaging measures obtained using this approach could serve as a
method for early identification of infants at highest risk for subsequent
neurodevelopmental disability. It also has the potential to provide bio-
markers for future NICU intervention trials of neuroprotective strategies
or to permit timely intervention designed to maximize an individual's
neurodevelopmental outcome. In addition, it is worth noting that SVR
methods are not restricted to analysis of rs-fMRI data, but provide a
framework for translating results across multiple modalities. Thus, this
approach can be extended to incorporate complementary data types
(e.g., electroencephalogram, physiological monitoring, serum metabo-
lites), further improving model accuracy (Mueller et al., 2013; Temko
etal, 2011).

While this representative application of SVR in this population dem-
onstrates its potential, it also provides interesting results. For example,
the GA estimates from the SVR approach were within 4 weeks of the ac-
tual values on average, with estimated values both larger and smaller
than actual values. Thus, the majority of preterm infants were accurate-
ly estimated to be born prematurely (and term infants were corre-
spondingly estimated to be born at or near term). In addition,
estimated measures show overlap between the term-born and
preterm-born populations (Fig. 4). It is unknown whether this scatter/
overlap in GA estimates is due to biological variability or related to
methodological issues such as noise in the measurements. Because a
subpopulation of preterm-born infants have typical neurodevel-
opmental outcomes, it is conceivable that the scatter is real, with
some of the preterm-born infants displaying network architecture that
would be appropriate for the term-born range (i.e., >36 weeks). This is
particularly true in this study, as we excluded any infant with moderate

or severe cerebral abnormality on conventional MRI studies, which re-
mains among the strongest current predictors of outcome (Hintz et al.,
2015; Woodward et al., 2006). Conversely, the term infants with low
birth GA estimates (i.e., <32 weeks) may be at greater than anticipated
risk of adverse neurodevelopmental outcomes. Importantly, the infants
from both term and preterm cohorts with overlapping GA estimates
did not demonstrate differences in clinical variables either between
(i.e., overlapping preterm versus overlapping term) or within groups
(i.e., overlapping preterm versus non-overlapping preterm). Thus, pre-
diction of birth GA may be approximate to assessment of brain maturity,
identifying those infants who would benefit most from additional close
monitoring of neurodevelopmental performance and/or neurodevel-
opmental intervention during infancy and childhood (i.e., the majority
of preterm infants and a targeted subset of term infants in this sample).

While the correlation coefficient for actual versus predicted GA was
relatively modest (r = 0.61), this value is affected by three factors.
First, the methodology, by definition, brings values closer to the mean;
as such, it is anticipated that term-born infants will have lower predict-
ed than actual GA values and preterm-born infants higher predicted
than actual GA values, both of which affect the correlation coefficient.
Second, the clinical estimates of GA used are generally considered to
be accurate within two weeks (and approximately one third of our
study population had one or fewer prenatal visits). Third, variability in
individual brain networks, as noted above, would also serve to increase
apparent scatter in the GA estimates and reduce the correlation coeffi-
cient. When considering the magnitude of the correlation coefficient
in the context of these methodological and clinical considerations, and
the high level of statistical significance for the model with a (relatively)
modest sample size, we contend that the result indicates that this ap-
proach may be useful for predicting outcome.

Caveats and limitations

Because of rigorous data quality criteria pertaining to motion, this in-
vestigation included a total of 100 infants, with 50 subjects in each
group. This sample size is relatively modest in comparison to SVM in-
vestigations in older populations, but large in relation to previous neo-
natal investigations (Doria et al., 2010; Fransson et al., 2009, 2007; Lin
et al., 2008; Smyser et al., 2016). In addition, potential effects of using
ROIs defined in older populations are difficult to evaluate, though ROIs
located outside of gray matter were identified using quantitative and
qualitative approaches and excluded from subsequent analyses. Fur-
ther, though atlas registration was comparable across groups, this may
not encapsulate subtle anatomic differences between preterm and
term subjects. As a result, it is difficult to determine if these potential
registration or image contrast differences may contribute to the high
model accuracy due to the sensitivity of SVM.

Finally, optimal methods for rs-fMRI data acquisition and prepro-
cessing for this population have not yet been rigorously defined. These
include the optimal spatial resolution and echo times. Further still, the
effects of infant state during data acquisition, such as awake/asleep
and sleep stage, on rs-fMRI results have yet to be carefully explored.
For this study, we selected approaches that have been employed by
our group and others to successfully study infants across multiple
prior investigations, but much work remains to be completed in this
area.

Conclusions

We employed multivariate pattern classification methods to analyze
neonatal rs-fMRI data and demonstrated differences between term-
born and preterm-born infants scanned at term equivalent PMA. The
network alterations detected were not specific to a particular brain re-
gion, as binary SVMs identified widespread inter- and intra-
hemispheric connections within and between RSNs important for
group categorization. These features were typically stronger (i.e.,
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correlation coefficients were greater) in infants born at term and were
not dependent upon sex, race, PMA at scan, atlas scaling and motion pa-
rameter differences. Further, the use of SVR enabled quantitative predic-
tions regarding birth GA in individual subjects, indicating that these
brain-wide, computationally intensive approaches may allow develop-
ment of models for defining indices of brain maturation at the time of
discharge from the NICU that enable presymptomatic prediction of the
risk for subsequent neurodevelopmental adversity.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2016.05.029.

Conflicts of interest

The authors report no conflicts of interest.

Acknowledgments

The authors thank Jeanette K. Kenley and Joshua S. Shimony for as-
sistance with data analysis; Alison G. Cahill and Amit M. Mathur for pro-
viding data; and Adam Eggebrecht, Siddharth Jain and Lillian Matthews
for useful comments on the manuscript.

This work was supported by the National Institutes of Health [grant
numbers K02 NS089852 to C.D.S., UL1 TR000448 to C.D.S, K12
HD076224 to N.U.F.D., K23 NS088590 to N.U.F.D., K23 MH105179 to
CE.R, RO1 HD05709801 to T.E.L and ]J.N., P30 NS048056 to A.Z.S., P30
HD062171 and RO1 HD061619]; Child Neurology Foundation [to C.D.S.
and N.U.E.D.]; Cerebral Palsy International Research Foundation [to
C.D.S.]; The Dana Foundation [to C.D.S.]; and the Barnes-Jewish Hospital
Foundation. Research reported in this publication was also supported by
the Eunice Kennedy Shriver National Institute of Child Health & Human
Development of the National Institutes of Health under Award Number
U54HD087011 to the Intellectual and Developmental Disabilities Re-
search Center at Washington University. The National Institutes of
Health and other funders had no role in study design, data collection
and analysis, decision to publish or preparation of the manuscript and
the content is solely the responsibility of the authors.

References

Ball, G., Counsell, S.J., Anjari, M., Merchant, N., Arichi, T., Doria, V., Rutherford, M.A.,
Edwards, A.D., Rueckert, D., Boardman, J.P., 2010. An optimised tract-based spatial
statistics protocol for neonates: applications to prematurity and chronic lung disease.
Neurolmage 53, 94-102.

Ben-Hur, A, Ong, C.S., Sonnenburg, S., Scholkopf, B., Ratsch, G., 2008. Support vector ma-
chines and kernels for computational biology. PLoS Comput. Biol. 4, e1000173.

Brown, T.T., Kuperman, ].M., Chung, Y., Erhart, M., McCabe, C., Hagler Jr., D.].,
Venkatraman, V.K., Akshoomoff, N., Amaral, D.G., Bloss, C.S., Casey, BJ., Chang, L.,
Ernst, T.M,, Frazier, ].A,, Gruen, J.R,, Kaufmann, W.E., Kenet, T., Kennedy, D.N,,
Murray, S.S., Sowell, E.R,, Jernigan, T.L,, Dale, A.M., 2012. Neuroanatomical assessment
of biological maturity. Curr. Biol. 22, 1693-1698.

Brummelte, S., Grunau, R.E., Chau, V., Poskitt, KJ., Brant, R., Vinall, J., Gover, A., Synnes,
AR, Miller, S.P., 2012. Procedural pain and brain development in premature new-
borns. Ann. Neurol. 71, 385-396.

Burton, H., Dixit, S., Litkowski, P., Wingert, ].R., 2009. Functional connectivity for somato-
sensory and motor cortex in spastic diplegia. Somatosens. Mot. Res. 26, 90-104.
Caskey, M., Stephens, B., Tucker, R., Vohr, B., 2014. Adult talk in the NICU with preterm in-

fants and developmental outcomes. Pediatrics 133, e578-e584.

Chau, V., Brant, R, Poskitt, KJ., Tam, E.W., Synnes, A., Miller, S.P., 2012. Postnatal infection
is associated with widespread abnormalities of brain development in premature
newborns. Pediatr. Res. 71, 274-279.

Cohen, A.L, Fair, D.A,, Dosenbach, N.U., Miezin, F.M., Dierker, D., Van Essen, D.C,, Schlaggar,
B.L., Petersen, S.E., 2008. Defining functional areas in individual human brains using
resting functional connectivity MRI. Neurolmage 41, 45-57.

Dabydeen, L., Thomas, J.E., Aston, T,J., Hartley, H., Sinha, S.K,, Eyre, ].A., 2008. High-energy
and protein diet increases brain and corticospinal tract growth in term and preterm
infants after perinatal brain injury. Pediatrics 121, 148-156.

Damaraju, E., Phillips, ].R., Lowe, ]J.R., Ohls, R., Calhoun, V.D., Caprihan, A., 2010. Resting-
state functional connectivity differences in premature children. Front. Syst. Neurosci.
4.

Doria, V., Beckmann, CF, Arichi, T., Merchant, N., Groppo, M., Turkheimer, F.E., Counsell,
SJ., Murgasova, M., Aljabar, P., Nunes, R.G., Larkman, D.J., Rees, G., Edwards, A.D.,
2010. Emergence of resting state networks in the preterm human brain. Proc. Natl.
Acad. Sci. U. S. A. 107, 20015-20020.

Dosenbach, N.U., Nardos, B., Cohen, A.L, Fair, D.A,, Power, ].D., Church, ].A,, Nelson, S.M.,
Wig, G.S., Vogel, A.C., Lessov-Schlaggar, C.N., Barnes, K.A., Dubis, ].W., Feczko, E.,
Coalson, R.S., Pruett Jr., JR.,, Barch, D.M., Petersen, S.E., Schlaggar, B.L., 2010. Prediction
of individual brain maturity using fMRI. Science 329, 1358-1361.

Ecker, C., Rocha-Rego, V., Johnston, P., Mourao-Miranda, J., Marquand, A., Daly, E.M.,
Brammer, M.J., Murphy, C., Murphy, D.G., 2010. Investigating the predictive value of
whole-brain structural MR scans in autism: a pattern classification approach.
Neurolmage 49, 44-56.

Erus, G., Battapady, H., Satterthwaite, T.D., Hakonarson, H., Gur, R.E., Davatzikos, C., Gur,
R.C,, 2014. Imaging patterns of brain development and their relationship to cognition.
Cereb. Cortex.

Fair, D.A,, Nigg, ].T., Iyer, S., Bathula, D., Mills, K.L., Dosenbach, N.U., Schlaggar, B.L., Mennes,
M., Gutman, D., Bangaru, S., Buitelaar, J.K., Dickstein, D.P., Di Martino, A., Kennedy,
D.N., Kelly, C., Luna, B., Schweitzer, ].B., Velanova, K., Wang, Y.F., Mostofsky, S.,
Castellanos, F.X., Milham, M.P., 2012. Distinct neural signatures detected for ADHD
subtypes after controlling for micro-movements in resting state functional connectiv-
ity MRI data. Front. Syst. Neurosci. 6, 80.

Ferguson, S.A.,, Ward, W.L., Paule, M.G., Hall, RW., Anand, K., 2012. A pilot study of pre-
emptive morphine analgesia in preterm neonates: effects on head circumference, so-
cial behavior, and response latencies in early childhood. Neurotoxicol. Teratol. 34,
47-55.

Ferradal, S.L., Liao, S.M., Eggebrecht, A.T., Shimony, ].S., Inder, T.E., Culver, J.P., Smyser, C.D.,
2015. Functional imaging of the developing brain at the bedside using diffuse optical
tomography. Cereb. Cortex.

Fox, M.D., Greicius, M., 2010. Clinical applications of resting state functional connectivity.
Front. Syst. Neurosci. 4, 19.

Franke, K., Ziegler, G., Kloppel, S., Gaser, C., 2010. Estimating the age of healthy subjects
from T1-weighted MRI scans using kernel methods: exploring the influence of vari-
ous parameters. Neurolmage 50, 883-892.

Franke, K., Luders, E., May, A., Wilke, M., Gaser, C., 2012. Brain maturation: predicting in-
dividual BrainAGE in children and adolescents using structural MRI. Neurolmage 63,
1305-1312.

Fransson, P., Skiold, B., Horsch, S., Nordell, A., Blennow, M., Lagercrantz, H., Aden, U., 2007.
Resting-state networks in the infant brain. Proc. Natl. Acad. Sci. U. S. A. 104,
15531-15536.

Fransson, P., Skiold, B., Engstrom, M., Hallberg, B., Mosskin, M., Aden, U., Lagercrantz, H.,
Blennow, M., 2009. Spontaneous brain activity in the newborn brain during natural
sleep-an fMRI study in infants born at full term. Pediatr. Res. 66, 301-305.

Gao, W., Alcauter, S., Elton, A., Hernandez-Castillo, C.R., Smith, ].K., Ramirez, J., Lin, W.,
2014. Functional network development during the first year: relative sequence and
socioeconomic correlations. Cereb Cortex.

Gholipour, A., Kehtarnavaz, N., Gopinath, K., Briggs, R., Panahi, I., 2008. Average field map
image template for Echo-planar image analysis. Conf. Proc. IEEE Eng. Med. Biol. Soc.
2008, 94-97.

Hintz, S.R.,, Barnes, P.D., Bulas, D., Slovis, T.L,, Finer, N.N., Wrage, L.A,, Das, A., Tyson, J.E.,
Stevenson, D.K,, Carlo, W.A., Walsh, M.C,, Laptook, AR., Yoder, B.A.,, Van Meurs, K.P.,
Faix, R.G., Rich, W., Newman, N.S., Cheng, H., Heyne, R/]., Vohr, B.R., Acarregui, M.,
Vaucher, Y.E., Pappas, A., Peralta-Carcelen, M., Wilson-Costello, D.E., Evans, P.W.,
Goldstein, R.F., Myers, G.J., Poindexter, B.B., McGowan, E.C., Adams-Chapman, I.,
Fuller, J., Higgins, R.D., 2015. Neuroimaging and neurodevelopmental outcome in ex-
tremely preterm infants. Pediatrics 135, e32-e42.

Inder, T.E., Warfield, S.K.,, Wang, H., Huppi, P.S., Volpe, ].J., 2005. Abnormal cerebral struc-
ture is present at term in premature infants. Pediatrics 115, 286-294.

Jenkins, G., Watts, D., 1968. Spectral Analysis and Its Applications. Holden-Day, San
Francisco.

Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M., 2012. Fsl.
Neuroimage 62, 782-790.

Katz, L.C,, Crowley, ].C., 2002. Development of cortical circuits: lessons from ocular dom-
inance columns. Nat. Rev. Neurosci. 3, 34-42.

Kohavi, R., 1995. A study of cross-validation and bootstrap for accuracy estimation and
model selection. International Joint Conference on Atrtificial Intelligence (JCAI). Mor-
gan Kaufmann, Montreal, Canada.

Li, F, Huang, X, Tang, W., Yang, Y., Li, B., Kemp, G.J., Mechelli, A., Gong, Q., 2014. Multivar-
iate pattern analysis of DTI reveals differential white matter in individuals with ob-
sessive-compulsive disorder. Hum. Brain Mapp. 35, 2643-2651.

Lin, W., Zhu, Q., Gao, W.,, Chen, Y., Toh, C.H., Styner, M., Gerig, G., Smith, J.K,, Biswal, B.,
Gilmore, J.H., 2008. Functional connectivity MR imaging reveals cortical functional
connectivity in the developing brain. AJNR Am. J. Neuroradiol. 29, 1883-1889.

Magnin, B,, Mesrob, L., Kinkingnehun, S., Pelegrini-Issac, M., Colliot, O., Sarazin, M., Dubois,
B., Lehericy, S., Benali, H., 2009. Support vector machine-based classification of
Alzheimer's disease from whole-brain anatomical MRI. Neuroradiology 51, 73-83.

Marlow, N., Wolke, D., Bracewell, M.A., Samara, M., 2005. Neurologic and developmental
disability at six years of age after extremely preterm birth. N. Engl. . Med. 352, 9-19.

Mathur, A.M., Neil, ].J., McKinstry, R.C,, Inder, T.E., 2008. Transport, monitoring, and suc-
cessful brain MR imaging in unsedated neonates. Pediatr. Radiol. 38, 260-264.

Meier, T.B., Desphande, A.S., Vergun, S., Nair, V.A,, Song, ]., Biswal, B.B., Meyerand, M.E.,
Birn, RM., Prabhakaran, V., 2012. Support vector machine classification and charac-
terization of age-related reorganization of functional brain networks. Neurolmage
60, 601-613.

Miller, S.P., Ferriero, D.M., Leonard, C., Piecuch, R., Glidden, D.V., Partridge, ].C., Perez, M.,
Mukherjee, P., Vigneron, D.B., Barkovich, A.J., 2005. Early brain injury in premature
newborns detected with magnetic resonance imaging is associated with adverse
early neurodevelopmental outcome. J. Pediatr. 147, 609-616.

Mueller, M., Almeida, J.S., Stanislaus, R., Wagner, C.L.,, 2013. Can machine learning
methods predict extubation outcome in premature infants as well as clinicians?
J. Neonatal. Biol. 2.


doi:10.1016/j.neuroimage.2016.05.029
doi:10.1016/j.neuroimage.2016.05.029
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0005
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0005
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0005
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0010
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0010
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0015
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0015
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0020
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0020
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0025
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0025
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0030
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0030
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0035
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0035
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0035
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0040
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0040
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0045
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0045
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0045
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0050
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0050
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0050
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0055
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0055
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0060
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0060
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0065
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0065
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0065
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0070
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0070
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0075
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0075
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0075
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0080
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0080
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0080
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0080
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0085
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0085
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0090
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0090
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0095
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0095
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0095
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0100
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0100
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0100
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0105
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0105
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0110
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0110
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0115
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0115
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0120
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0120
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0120
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0125
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0125
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0130
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0130
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0135
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0135
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0140
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0140
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0145
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0145
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0150
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0150
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0150
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0155
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0155
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0155
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0160
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0160
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0165
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0165
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0170
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0170
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0175
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0175
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0180
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0180
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0180
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0185
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0185
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0185
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0190
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0190
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0190

C.D. Smyser et al. / Neurolmage 136 (2016) 1-9 9

Norman, K.A.,, Polyn, S.M., Detre, G.J., Haxby, J.V., 2006. Beyond mind-reading: multi-voxel
pattern analysis of fMRI data. Trends Cogn. Sci. 10, 424-430.

Pariyadath, V., Stein, E.A,, Ross, TJ., 2014. Machine learning classification of resting state
functional connectivity predicts smoking status. Front. Hum. Neurosci. 8, 425.

Pereira, F., Mitchell, T., Botvinick, M., 2009. Machine learning classifiers and fMRI: a tuto-
rial overview. Neurolmage 45, S199-5209.

Pineda, R.G., Neil, ], Dierker, D., Smyser, C.D., Wallendorf, M., Kidokoro, H., Reynolds, L.C.,
Walker, S., Rogers, C., Mathur, A.M., Van Essen, D.C., Inder, T., 2014. Alterations in
brain structure and neurodevelopmental outcome in preterm infants hospitalized
in different neonatal intensive care unit environments. J. Pediatr. 164, 52-60, e52.

Posner, J., Park, C., Wang, Z., 2014. Connecting the dots: a review of resting connectivity
MRI studies in attention-deficit/hyperactivity disorder. Neuropsychol. Rev. 24, 3-15.

Power, ].D., Cohen, A.L., Nelson, S.M., Wig, G.S., Barnes, K.A., Church, J.A., Vogel, A.C.,
Laumann, T.O., Miezin, F.M., Schlaggar, B.L.,, Petersen, S.E., 2011. Functional network
organization of the human brain. Neuron 72, 665-678.

Power, J.D., Mitra, A., Laumann, T.O., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., 2014.
Methods to detect, characterize, and remove motion artifact in resting state fMRI.
Neurolmage 84, 320-341.

Power, ].D., Schlaggar, B.L., Petersen, S.E., 2015. Recent progress and outstanding issues in
motion correction in resting state fMRI. Neurolmage 105, 536-551.

Pruett Jr., J.R., Kandala, S., Hoertel, S., Snyder, A.Z., Elison, J.T., Nishino, T., Feczko, E.,
Dosenbach, N.U., Nardos, B., Power, ].D., Adeyemo, B., Botteron, K.N., McKinstry,
R.C,, Evans, A.C., Hazlett, H.C,, Dager, S.R., Paterson, S., Schultz, R.T., Collins, D.L.,
Fonov, V.S., Styner, M., Gerig, G., Das, S., Kostopoulos, P., Constantino, J.N., Estes,
A.M., Petersen, S.E., Schlaggar, B.L., Piven, J., 2015. Accurate age classification of 6
and 12 month-old infants based on resting-state functional connectivity magnetic
resonance imaging data. Dev. Cogn. Neurosci. 12, 123-133.

Redcay, E., Moran, ].M., Mavros, P.L., Tager-Flusberg, H., Gabrieli, ].D., Whitfield-Gabrieli,
S., 2013. Intrinsic functional network organization in high-functioning adolescents
with autism spectrum disorder. Front. Hum. Neurosci. 7, 573.

Robinson, E.C., Hammers, A, Ericsson, A., Edwards, A.D., Rueckert, D., 2010. Identifying
population differences in whole-brain structural networks: a machine learning ap-
proach. Neurolmage 50, 910-919.

Rosa, M.J,, Portugal, L., Hahn, T,, Fallgatter, AJ., Garrido, M.L, Shawe-Taylor, J., Mourao-Mi-
randa, J., 2015. Sparse network-based models for patient classification using fMRI.
Neurolmage 105, 493-506.

Saigal, S., Doyle, LW., 2008. An overview of mortality and sequelae of preterm birth from
infancy to adulthood. Lancet 371, 261-269.

Satterthwaite, T.D., Wolf, D.H., Roalf, D.R,, Ruparel, K, Erus, G., Vandekar, S., Gennatas, E.D.,
Elliott, M.A., Smith, A., Hakonarson, H., Verma, R., Davatzikos, C., Gur, R.E., Gur, R.C,,
2014. Linked sex differences in cognition and functional connectivity in youth.
Cereb Cortex.

Scholkopf, B., Smola, AJ., 2002. Learning With Kernels: Support Vector Machines, Regular-
ization, Optimization and Beyond. MIT Press, Cambridge, MA.

Shen, H,, Wang, L, Liu, Y., Hu, D., 2010. Discriminative analysis of resting-state functional
connectivity patterns of schizophrenia using low dimensional embedding of fMRI.
Neurolmage 49, 3110-3121.

Smith, G.C., Gutovich, J., Smyser, C., Pineda, R., Newnham, C., Tjoeng, T.H., Vavasseur, C.,
Wallendorf, M., Neil, J., Inder, T., 2011. Neonatal intensive care unit stress is associated
with brain development in preterm infants. Ann. Neurol. 70, 541-549.

Smola, A.a.S.B., 2004. A tutorial on support vector regression. Stat. Comput. 14, 199-222.

Smyser, C.D., Inder, T.E., Shimony, .S, Hill, J.E., Degnan, A]., Snyder, A.Z., Neil, ].J., 2010.
Longitudinal analysis of neural network development in preterm infants. Cereb. Cor-
tex 20, 2852-2862.

Smyser, C.D., Snyder, A.Z., Shimony, ].S., Mitra, A., Inder, T.E., Neil, ] J., 2016. Resting-state
network complexity and magnitude are reduced in prematurely born infants. Cereb
Cortex 26, 322-333.

Temko, A., Thomas, E., Marnane, W., Lightbody, G., Boylan, G., 2011. EEG-based neonatal
seizure detection with support vector machines. Clin. Neurophysiol. 122, 464-473.

Van Essen, D.C,, Drury, H.A., Dickson, J., Harwell, J., Hanlon, D., Anderson, C.H., 2001. An
integrated software suite for surface-based analyses of cerebral cortex. J. Am. Med. In-
form. Assoc. 8, 443-459.

Vergun, S., Deshpande, A.S., Meier, T.B., Song, ]., Tudorascu, D.L.,, Nair, V.A,, Singh, V.,
Biswal, B.B., Meyerand, M.E., Birn, R.M., Prabhakaran, V., 2013. Characterizing func-
tional connectivity differences in aging adults using machine learning on resting
state fMRI data. Front. Comput. Neurosci. 7, 38.

Woodward, L.J., Anderson, P.J., Austin, N.C,, Howard, K., Inder, T.E., 2006. Neonatal MRI to
predict neurodevelopmental outcomes in preterm infants. N. Engl. J. Med. 355,
685-694.

Woodward, LJ., Moor, S., Hood, K.M., Champion, P.R., Foster-Cohen, S., Inder, T.E., Austin,
N.C., 2009. Very preterm children show impairments across multiple
neurodevelopmental domains by age 4 years. Arch. Dis. Child. Fetal Neonatal Ed.
94, F339-F344.


http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0195
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0195
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0200
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0200
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0205
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0205
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0210
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0210
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0210
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0215
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0215
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0220
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0220
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0225
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0225
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0230
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0230
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0235
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0235
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0235
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0240
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0240
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0245
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0245
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0245
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0250
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0250
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0255
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0255
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0260
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0260
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0265
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0265
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0270
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0270
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0270
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0275
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0275
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0280
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0285
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0285
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0290
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0290
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0290
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0295
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0295
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0300
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0300
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0300
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0305
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0305
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0305
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0310
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0310
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0310
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0315
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0315
http://refhub.elsevier.com/S1053-8119(16)30148-3/rf0315

	Prediction of brain maturity in infants using machine-�learning algorithms
	Introduction
	Materials and methods
	Subjects
	Data acquisition
	Data analysis
	rs-fMRI preprocessing
	ROI selection

	Support vector machine analyses

	Results
	SVM term vs preterm classification
	SVR birth gestational age prediction

	Discussion
	Summary of findings
	Relation to prior multivariate pattern analysis (MVPA) studies
	Relation to prior infant rs-fMRI investigations
	Neurodevelopmental implications
	Caveats and limitations

	Conclusions
	Conflicts of interest
	Acknowledgments
	References


