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Abstract 

The red nucleus is a large brainstem structure that coordinates limb movement for locomotion in 

quadrupedal animals (Basile et al., 2021). The humans red nucleus has a different pattern of 

anatomical connectivity compared to quadrupeds, suggesting a unique purpose (Hatschek, 

1907). Previously the function of the human red nucleus remained unclear at least partly due to 

methodological limitations with brainstem functional neuroimaging (Sclocco et al., 2018). Here, 

we used our most advanced resting-state functional connectivity (RSFC) based precision 

functional mapping (PFM) in highly sampled individuals (n = 5) and large group-averaged 

datasets (combined N ~ 45,000), to precisely examine red nucleus functional connectivity. 

Notably, red nucleus functional connectivity to motor-effector networks (somatomotor hand, foot, 

and mouth) was minimal. Instead, red nucleus functional connectivity along the central sulcus 

was specific to regions of the recently discovered somato-cognitive action network (SCAN; 

(Gordon et al., 2023)). Outside of primary motor cortex, red nucleus connectivity was strongest 

to the cingulo-opercular (CON) and salience networks, involved in action/cognitive control 
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(Dosenbach et al., 2007; Newbold et al., 2021) and reward/motivated behavior (Seeley, 2019), 

respectively. Functional connectivity to these two networks was organized into discrete dorsal-

medial and ventral-lateral zones. Red nucleus functional connectivity to the thalamus 

recapitulated known structural connectivity of the dento-rubral thalamic tract (DRTT) and could 

prove clinically useful in functionally targeting the ventral intermediate (VIM) nucleus. In total, 

our results indicate that far from being a ‘motor’ structure, the red nucleus is better understood 

as a brainstem nucleus for implementing goal-directed behavior, integrating behavioral valence 

and action plans.  

 

Introduction 

 The brainstem has been thought of an evolutionarily conserved structure, limited to 

physiological (e.g., breathing) and basic motor functions (e.g., locomotion) (Baizer, 2014), with 

the exception of neuromodulatory nuclei (e.g., locus coeruleus). The red nucleus, located in the 

midbrain, first emerged as quadruped precursors began coordinating extremities for movement 

(Basile et al., 2021; De Lange, 1912; Padel, 1993; Padel et al., 1986; Ten Donkelaar, 1988). 

The red nucleus contains magno- and parvo-cellular neurons (Basile et al., 2021). In 

quadrupeds, magnocellular red nucleus neurons project down the full length of the spinal cord, 

forming the rubrospinal tract, which evokes limb movements when stimulated (De Lange, 1912; 

Ghez, 1975). Parvocellular red nucleus neurons are smaller in diameter and do not project to 

the spinal cord (Basile et al., 2021). Instead, these neurons participate in the dento-rubro-

thalamic tract (DRTT), which connects to the cerebellum’s dentate nucleus and the ventral 

intermediate nucleus (VIM) of the thalamus (Basile et al., 2021; Cacciola et al., 2019; Lapresle 

& Hamida, 1970). Due to the parvocellular red nucleus projection to the thalamus, clinical 

neuroscience primarily studies structural connectivity of the red nucleus as a tool to identify the 

VIM (Nowacki et al., 2022), which is a target for deep brain stimulation treatment of essential 
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tremor and tremor predominant Parkinson’s Disease (Haubenberger & Hallett, 2018; Schlaier et 

al., 2015).  

In a striking example of phylogenetic refinement from quadrupeds to bipedal humans, 

the proportion of red nucleus neurons has shifted strongly from magnocellular to parvocellular 

(Cisek, 2019; Massion, 1967; Padel et al., 1981). For instance, the reptilian red nucleus is 

almost entirely magnocellular (Massion, 1967), the feline red nucleus is approximately 2/3 

magnocellular (Huisman et al., 1982), and the primate red nucleus is primarily parvocellular 

(Basile et al., 2021). Furthermore, comparison of the quadrupedal baboon to the bipedal upright 

gibbon shows that bipedalism coincides with a continued reduction of the rubrospinal tract 

(Padel et al., 1981). In humans, there is a small rubrospinal tract that only projects to the 

cervical spinal cord, indicating that it could only serve a minimal role in locomotion (Massion, 

1988; Nathan & Smith, 1982). The proportion of cell types in the human red nucleus favors 

parvocellular so much so that studies of the red nucleus in humans are effectively studies of the 

parvocellular red nucleus (Nathan & Smith, 1982). Even though human locomotion is supported 

by the cortico-spinal tract rather than the rubro-spinal tract, the expansion of parvocellular 

neurons has maintained the red nucleus as the largest nucleus in the human midbrain.  

Despite nearly 150 years of research, the red nucleus’s function in humans remains 

unclear (Basile et al., 2021), revealing major gaps in our understanding of a clinically relevant 

structure and the brainstem as a whole. Direct recordings from the parvocellular red nucleus 

show activity is unrelated to free-form movement in non-human primates (Herter et al., 2015; 

Kennedy et al., 1986) and humans (Lefranc et al., 2014). Interestingly, there appears to be a 

relationship between parvocellular red nucleus and goal-directed actions and cognition. In an 

arm fixation-maintenance study in non-human primates, arm fixation evoked no red nucleus 

response except when an adaptive arm correction was required (Herter et al., 2015). Human 

task fMRI indicates simple sensory stimulation and hand movements produce small red nucleus 
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task activations relative to cognitive tactile discrimination tasks (Liu et al., 2000; Sung et al., 

2022), and the human red nucleus may be active during cognitive control (de Hollander et al., 

2017; Sung et al., 2022). Rodent electrophysiology recordings during a stop-signal task found 

trial-to-trial adjustments in the parvocellular red nucleus firing rate that were correlated with 

movement accuracy and speed, indicating proactive control signals in the red nucleus (Brockett 

et al., 2020). Based on these findings, some have argued for parvocellular red nucleus 

involvement in motor control (Basile et al., 2021), which is a broad concept including motor 

planning, execution, and feedback (Craighero et al., 1999; Fajen, 2009; Kalaska, 2009; Latash, 

2012; Stanley & Miall, 2009; Taylor & Gottlieb, 1985; Vogt et al., 2003). Owing in part to 

structural connectivity to primary motor cortex, the adaptive control responses in parvocellular 

red nucleus could support a mechanism for indirect control of movements based on task goals, 

but the support for this hypothesis is weak.  

  Resting state functional connectivity (RSFC) has greatly expanded our understanding of 

human brain organization by revealing its subdivision into large-scale functional networks 

related to specific functions such as action control, movement and salience. (Biswal et al., 1995; 

Dosenbach et al., 2007; Power et al., 2011; Seeley et al., 2007; Yeo et al., 2011). With large 

amounts of high quality data it is now possible to identify networks at the individual level, a 

technique we have dubbed precision functional mapping (PFM (E. J. Allen et al., 2022; Gordon 

et al., 2017; Laumann et al., 2015; Lynch et al., 2020)). Using PFM, we previously mapped the 

functional connectivity profiles of the thalamus (Greene et al., 2020), cerebellum (Marek et al., 

2018), and hippocampus (Zheng et al., 2021). This process has allowed us to test theories of 

subcortical nuclei, especially when such models argue for connectivity with specific networks. 

Unfortunately, brainstem functional neuroimaging has been historically limited due to low signal-

to-noise ratio (SNR) related to head coil distance, suboptimal echo times, and unique forms of 

noise owing to cerebrospinal fluid pulsations (Beissner, 2015; de Hollander et al., 2015, 2017; 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 1, 2024. ; https://doi.org/10.1101/2023.12.30.573730doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.30.573730
http://creativecommons.org/licenses/by-nc/4.0/


Wright & Wald, 1997). As a result, fMRI and RSFC of the red nucleus have greatly lagged the 

rest of the brain, making it difficult to examine its organization in humans.  

We have recently shown that the precentral gyrus (i.e. primary motor cortex) is 

separated into motor-effector specific regions (foot, hand, and mouth) and somato-cognitive 

action network (SCAN) regions for integrating body movement, goals, and physiology (Gordon 

et al., 2023). These SCAN regions are most closely coupled to the cingulo-opercular network 

(CON), which is important for executive action control (Dosenbach et al., 2007; Newbold et al., 

2021). While the parvocellular red nucleus has structural connectivity with the primary motor 

cortex (Burman et al., 2000), it is unclear if this connectivity is with motor-effector or SCAN 

regions, which would have a fundamentally different interpretation. Should the red nucleus 

indirectly control movements based on task goals, we predict extensive connectivity with motor-

effector networks in the primary motor cortex (i.e. somatomotor hand, food, and/or mouth). 

Importantly, parvocellular red nucleus structural connectivity extends far beyond the precentral 

gyrus, including a robust connection with the anterior cingulate cortex (Burman et al., 2000). 

The anterior cingulate contains many networks, including a large representation of the salience 

network, which is important for processing reward signals and motivation (Peters et al., 2016; 

Seeley, 2019; Seeley et al., 2007). Based on structural connectivity alone, it remains unknown 

which networks the human red nucleus is functionally connected with.  

 Here, we determined individual-specific RSFC of the human red nucleus by overcoming 

historically low signal-to-noise with novel denoising approaches. We verified PFM results using 

group-averaged data from three large fMRI datasets (Human Connectome Project (HCP), 

Adolescent Brain Cognitive Development (ABCD) study, UK Biobank (UKB); combined sample 

size of nearly 45,000 participants).  

Results 

The red nucleus is connected to salience and action control networks 
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Red nucleus (Fig 1A) functional connectivity was strongest in the dorsal anterior 

cingulate, medial prefrontal, pre-supplementary motor, insula (especially anterior insula), 

parietal operculum and anterior prefrontal cortex (Fig 1B, C). Functional connectivity was clearly 

organized into networks, with the strongest connectivity to the CON (action control; dorsal 

anterior cingulate cortex, anterior prefrontal cortex, and anterior insula (Dosenbach et al., 

2007)), and salience network (reward/motivated behavior; anterior cingulate/medial prefrontal 

cortex and ventral anterior insula (Seeley et al., 2007)), but not to foot/hand/mouth effector-

specific motor regions near the central sulcus (Fig 1B, C; SFig 1:4). Functional connectivity in 

the central sulcus was strongest to the SCAN regions, which are closely related to the CON 

(Gordon et al., 2023). Red nucleus was not connected to the default mode network regions in 

prefrontal cortex and fronto-parietal network regions in the lateral prefrontal cortex and insula. 

There were no obvious and consistent differences between the left and right red nucleus (SFig 

1; SFig 3), nor were the results contingent on the functional connectivity threshold (SFig 2). This 

connectivity pattern was also evident in the three large group-averaged datasets totaling ~ 

45,000 participants (Fig 1C; SFig 1) and in additional individual-specific red nucleus seed maps 

(SFig 4).   

Red nucleus is functionally connected to the ventral intermediate thalamus 
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Since the red nucleus is a node in the DRTT, we next examined connectivity to 

subcortical structures. Within thalamus, red nucleus functional connectivity was strongest to the 

ventral lateral posterior (VLP) nucleus, centered on the ventral intermediate nucleus (VIM), 

Figure 1: Functional connectivity mapping of the red nucleus. A) Axial (top) and coronal (bottom) 
display of the right red nucleus (white outline) overlaid on a T2w structural image for subject PFM-
Nico. B) Resting state functional connectivity (RSFC) seeded from the right red nucleus in an 
exemplar highly sampled participant with multi-echo independent component analysis (MEICA) 
denoising (PFM-Nico; 134 min resting-state fMRI). Individual specific functional connectivity map 
shows strongest 20 percent of cortical vertices. Bar graph quantifies the average connectivity per 
network. The average connectivity was significantly different from zero for the salience, cingulo-
opercular (CON) and dorsal attention (DAN) networks (two-sided t-test against null distribution, *P < 
0.05, Bonferroni correction), but was only positive for salience and CON. C) Group-averaged 
functional connectivity map shows strongest 20 percent of cortical vertices using previously defined 
split-halves (Marek et al., 2022; n = 1964 participants each) from the Adolescent Brain Cognitive 
Development (ABCD) study. For additional participants see Supplemental Figures 1:4.  
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which is a major target for deep brain stimulation with a known structural connection to the red 

nucleus (Schlaier et al., 2015). This was observed at the individual level using a subject specific 

Figure 2: Thalamic connectivity of the red nucleus. Top 20% of red nucleus connections 
for the thalamus (MNI space) for PFM-Nico (A), ABCD study (n = 3,928) (B), HCP (812) (C), 
and UKB (n = 4,000) (D). Four different axial slices of the thalamus are shown (MNI space) 
overlaid on the subject’s structural image (A only). Thresholding is based on the top 20% of 
connections for the thalamus. The VIM (ventral intermediate) nucleus of the thalamus 
defined in an individual subject is shown in panel A. The nucleus outline based on a 
probabilistic map using THOMAS is shown in panels B-D. See supplemental figure 5 for 
additional participants.  
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thalamic segmentation (Fig 2A) and verified using large group-averaged datasets (Fig 2B-D; 

UKB (n = 4,000), ABCD study (n = 3,928), HCP (n = 812)) and additional individual-specific 

analyses (SFig 5). Interestingly, red nucleus connectivity tended to be stronger in more dorsal 

sections of the VLP (MNI z coord. > 2 mm). Within cerebellum, red nucleus functional 

connectivity was primarily to lobule VI (SFig 6). 

 Red nucleus is not connected to effector-specific primary motor cortex 

Evaluating the red nucleus as a whole, 

could potentially obscure a subregion of red 

nucleus with motor-effector connectivity. To 

further evaluate the hypothesis that red 

nucleus should have motor-effector network 

connectivity, we applied a winner-take-all 

approach to assign red nucleus voxels to 

networks based on cortical connectivity 

(Greene et al., 2020; Zheng et al., 2021). We 

found that almost no voxels had preferential 

motor-effector specific connectivity (foot, 

hand, mouth) (Fig 3, hollow triangles) in large 

group-averaged (Fig. 3, left) or individual-

specific (Fig. 3, right) datasets. Most voxels 

were assigned to either CON, salience, or 

SCAN (Fig 3, filled circles).  

 

Distinct ventral-lateral (salience) and dorsal-medial (cingulo-opercular) subdivisions 

Figure 3: Action versus motor-effector 
network assignments of red nucleus 
voxels. Using winner-take-all red nucleus 
voxels were assigned to networks. The 
percentage of red nucleus voxels assigned 
to action related networks (salience network, 
CON, or SCAN) is shown with filled circles 
and the percent assigned to the three motor-
effector networks is shown with hollow 
triangles. The left three columns show 
group-averaged data compared to the right 
five columns showing data from highly 
sampled individuals.  
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Winner-take-all assignments identified two sub-populations within the red nucleus, one with 

connectivity to the salience network and one to the CON/SCAN (SFig 7A). To delineate red 

nucleus subdivisions, we used agglomerative hierarchical clustering which grouped voxels 

based on functional connectivity with cortical networks (Gan et al., 2020; Greene et al., 2020). 

These analyses identified a dorsal-medial and ventral-lateral division of the red nucleus (Fig 4A, 

Figure 4: Functional connectivity subdivisions of the red nucleus. A) Anatomical display 
of dorsal-medial (hatched) and ventral-lateral (no fill) red nucleus subdivisions in exemplar 
participant (PFM-Nico) overlaid on T2w image. B) Strongest 20 percent of cortical RSFC for 
ventral-lateral (left) and dorsal-medial (middle) red nucleus subdivisions. Right most image 
shows the difference map between these two connectivity maps with greater ventral-lateral 
connectivity in red and greater dorsal-medial in blue. C) Average cortical RSFC organized by 
network for dorsal-medial (hatched) and ventral-lateral (no fill) subdivisions. D) Similarity (r) 
in network connectivity for each red nucleus voxel grouped into dorsal-medial and ventral-
lateral divisions. For additional subjects/analyses see supplemental figures 6:8. 
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SFig 7:8, STable1). Comparing the functional connectivity of these two sub-divisions ((ventral-

lateral [salience preference] - dorsal-medial [CON preference]); Zheng et al., 2021) 

demonstrated that the ventral-lateral division had stronger connectivity to the salience and 

parietal memory network (Gilmore et al., 2021; Zheng et al., 2021), while the dorsal-medial red 

nucleus had stronger connectivity to the CON and to SCAN regions within the precentral gyrus 

(Fig 4B,C, SFig 8A). Using preference for Salience or CON connectivity alone in a forced choice 

was able to identify the two red nucleus partitions (AUC>0.9). In support of this dorsal-

medial/ventral-lateral partition of red nucleus, we also examined the correlation between red 

nucleus connectivity and specific cortical networks, revealing an obvious divide in network 

connectivity between CON and salience (Fig 4C:D, SFig 7B, SFig 8D). Neither subdivision 

displayed effector-specific motor connectivity, and as with connectivity of the entire red nucleus, 

dorsal-medial red nucleus precentral gyrus connectivity was strongest to SCAN regions (Fig 

4B,C). Using the preference for salience or CON in group average datasets identified a similar 

ventral-lateral (salience) and dorsal-medial (CON/SCAN) division (SFig 7B, SFig 9).  

Given that there were two discrete subdivisions within the red nucleus favoring the 

salience network (ventral-lateral) or CON (dorsal-medial), we used each as separate seeds 

when determining subcortical connectivity. The ventral-lateral salience network favoring red 

nucleus partition was functionally connected to the VIM (SFig 10A). The ventral-lateral partition 

had peak cerebellar connectivity in lobule VI (SFig 10A). The dorsal-medial CON favoring 

partition was functionally connected to the mediodorsal nucleus of the thalamus (SFig 10B). 

This dorsal-medial red nucleus partition also had connectivity peaks in cerebellar lobule VIII, 

especially in VIIIb (SFig 10B).  

Discussion 

The human red nucleus is no longer a motor structure 

The red nucleus is functionally connected to action-control (cingulo-opercular) and 
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motivated behavior (salience) networks, but not to motor-effector networks. These results, 

combined with the reduction in the rubrospinal pathway in humans (Massion, 1988; Nathan & 

Smith, 1982), suggest that the red nucleus no longer controls movements in humans, arguing 

against the motor-control hypothesis. In fact, the red nucleus displayed no functional 

connectivity (or negative functional connectivity) with motor-effector networks, and motor cortex 

connectivity was restricted to SCAN regions (Gordon et al., 2023). The evolutionary principle of 

‘exaptation’, where a trait serves a new function other than its original purpose, may be useful in 

understanding the red nucleus. The original function was coordinated extremity movement for 

locomotion, but the pyramidal system emerged and bipedalism made the rubrospinal pathway 

outdated for its prior functions (Ten Donkelaar, 1988). Instead of gradually disappearing, the 

once motor red nucleus was ultimately repurposed.  

Multiple non-human primate studies have shown red nucleus structural connectivity to the 

motor cortex using tract tracing (Burman et al., 2000; H. G. Kuypers & Lawrence, 1967). 

Somewhat surprisingly, human red nucleus functional connectivity to effector-specific regions of 

motor cortex was small or negative. Instead, red nucleus functional connectivity to motor cortex 

appeared limited to the SCAN regions. This conflicts with motor-control models that position the 

red nucleus (and potentially the entire DRTT) as a system for the modification of motor-effectors 

in the cortex. Instead, the observed functional connectivity to SCAN is more consistent with the 

red nucleus’ original role in whole body coordination, an operation that activates SCAN (Gordon 

et al., 2023). One could predict that a re-analysis of non-human primate red nucleus tract 

tracing studies that factor in SCAN homologues in precentral gyrus would show red nucleus 

motor cortex connectivity to be specific to SCAN homologues, instead of motor-effector regions.  

Red nucleus is positioned to integrate reward and action 

It remains an open question whether the salience and CON subdivisions of the red nucleus 

are strictly parallel or whether they might support the integration of reward/motivated-behaviors 
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(hence salience network connectivity) and action-control (hence CON connectivity), allowing 

action plans to be regulated by motivation, even in the brainstem. This general framework is 

consistent with emerging perspectives that the brain must produce specific behavior in the 

context of motivated states (W. E. Allen et al., 2019). The red nucleus could serve as a tool to 

guide and rapidly adapt action execution based on changing salience information. In either 

scenario, it appears human action control includes repurposed motor nuclei, and highlights an 

evolutionary link between thinking/planning and movement (György Buzsáki, 2019; Llinás, 

2002).  

Neural networks are an organizing principle in the brainstem 

 The realization that the red nucleus function seems to have shifted its role from 

quadrupedal locomotion to reward and action processes has broader implications. The 

brainstem has often been conceptualized as participating in two rigid hierarchies: a top-down 

control hierarchy where it passively receives and transmits top-down signals originating from the 

cortex (often motor commands); and a bottom-up sensory hierarchy where it passively receives 

and transmits sensory signals originating from the periphery. Instead, tract tracing indicates that 

neither of these perspectives are fully applicable to the red nucleus, given the small connection 

with the spinal cord. We speculate that the dominant representation of two cortical networks in 

the red nucleus indicates that neural networks are a principle of whole brain organization, and 

not just the cerebral cortex, in keeping with recent findings and perspectives (Chin et al., 2023; 

Gordon et al., 2020; Raut et al., 2021). How specific networks interact with the body, 

establishing the brain-body relationship (Chiel & Beer, 1997; Dum et al., 2019), is a topic that 

warrants further investigation and would likely have important implications to studies of affect 

and motivated behavior.  

Clinical targeting can benefit from red nucleus heterogeneity 

Our improved understanding of human red nucleus connectivity and organization could 
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reveal new targeting approaches for neuromodulation. Despite indications of red nucleus 

pathology in illnesses like Parkinson’s disease (Guan et al., 2017), we are aware of less than a 

half dozen studies that investigate red nucleus stimulation for disease, such as essential tremor 

or tremor-predominant Parkinson’s Disease. In one case, an electrophysiologic profile of the red 

nucleus was developed with the goal of avoiding the red nucleus in brain stimulation (Micieli et 

al., 2017). This is not without reason, as the side effect profile for red nucleus stimulation is 

alarming, because axons of the third cranial nerve pass through the red nucleus and red 

nucleus damage/stimulation can result in ocular disturbances (Lefranc et al., 2014; Leys et al., 

1992). This proximity to oculomotor nuclei/axons may help to explain red nucleus functional 

connectivity with visual cortex (Fig 1B). Interestingly, the insertion of a macro-electrode into the 

red nucleus transiently reduced postural tremor in a single patient (Lefranc et al., 2014). Our 

findings suggest that using whole red nucleus connectivity (functional and potentially structural) 

could be a suboptimal approach for identifying thalamic targets. Instead, using the functional 

connectivity of each red nucleus division to the thalamus could prove to be an effective strategy 

for fine-tuning VIM or mediodorsal stimulation sites at an individual level for the treatment of 

tremor or pain (Meda et al., 2019) respectively. 

Salience and action control loops converge in the red nucleus 

In conclusion, the absence of motor-effector functional connectivity and strong salience and 

cingulo-opercular network (CON) connectivity argues against the human red nucleus being a 

motor-control nucleus that indirectly influences motor-effector neurons in M1 to modify 

movement. The human red nucleus may form a node in a loop between the cortex and the 

cerebellum to integrate motivated behavior into action control, facilitating goal-directed behavior. 

The functional coupling of brainstem nuclei with higher-order action control networks indicates 

that neuroscience can benefit from taking a holistic approach to investigations of the brain (Chin 

et al., 2023).  
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Methods 

Washington University participant for precision functional mapping (PFM-Nico) 

The participant was 37 year old healthy adult male used in both the Midnight Scan Club 

((Gordon et al., 2017); MSC02) and limb immobilization studies ((Newbold et al., 2020) ;SIC01), 

and the senior investigator of this current project (N.U.F.D.). This participant is referred to as 

precision functional mapping (PFM)-Nico.  

Cornell University participants for precision functional mapping 

Four healthy adult participants (ages 29, 38, 24, and 31; all male) from a previously 

published study were used (Lynch et al., 2020). These participants are referred to as participant 

1:4 in the manuscript. The previous study was approved by the Weill Cornell Medicine 

Instructional Review Board and each participant provided written informed consent. For additional 

details please see ref. (Lynch et al., 2020).  

UK Biobank (UKB) 

 We downloaded the group-averaged weighted eigenvectors from an initial group of 

4,100 UKB participants aged 40-69 years (53% female) with 6-minute resting-state scans 

(https://www.fmrib.ox.ac.uk/ukbiobank/). Details of the acquisition and processing can be found 

at https://biobank.ctsu.ox.ac.uk/crystal/ukb/docs/brain_mri.pdf (Miller et al., 2016). This 

eigenvector file was mapped to the Conte69 surface template (Van Essen et al., 2012) using the 

ribbon-constrained method in Connectome Workbench (Glasser et al., 2013), following which 

the eigenvector time courses were cross-correlated.  

Adolescent Brain Cognitive Development (ABCD) Study 
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3,928 9-10-year-old participants (51% female), with at least 8 minutes of low-motion resting 

state data were used. In cases (e.g. Fig 1C) these subjects were split into two equal halves as 

described previously (Marek et al., 2022). Data processing was done with the ABCD-BIDS 

pipeline (NDA collection 3165; https://github.com/DCAN-Labs/abcd-hcp-pipeline). For additional 

details see: (Casey et al., 2018; Feczko et al., 2021; Marek et al., 2022). 

Human Connectome Project (HCP) 

 The group-averaged dense functional connectivity matrix for the HCP 1200 participants 

release, consisting of functional connectivity data for all 812 participants aged 22-35 years (410 

female) with 60 minutes of resting-state fMRI, was downloaded from 

https://db.humanconnectome.org. For more information on the acquisition and processing see:  

(Glasser, Coalson, et al., 2016; Glasser et al., 2013; Glasser, Smith, et al., 2016; Smith et al., 

2013).  

Preprocessing of PFM-Nico 

PFM-Nico refers to a single participant (N.U.F.D) collected at Washington University in St. 

Louis. Imaging was performed using a Siemens TRIO 3T MRI scanner. Structural MRI was 

consisted of four T1-weighted images (sagittal acquisition, 224 slices, 0.8 mm isotropic resolution, 

[TE etc]) and four T2-weigthed images (sagittal [details]). Structural data were processed using 

previously described methods (Newbold et al., 2020) in which all T1w and T2w were separately 

averaged into a single structural file for functional processing and registration. Functional data 

acquisition was done using a multi-echo gradient-echo sequence consisting of nine 15-minute 

runs ([parameters]). In addition, 3 noise frames were acquired per run for noise reduction with 

distribution corrected (NORDIC) PCA, which was used to reduce thermal noise in functional data 

(Dowdle et al., 2023).  
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 Optimal combination of multi-echo data and multi-echo independent component analysis 

(MEICA) denoising were performed using the tedana package version 0.0.11 (DuPre et al., 

2021; Kundu et al., 2012, 2013). To promote reproducibility, we copy the automated methods 

description writeup as follows. TE-dependence analysis was performed on input data. An initial 

mask was generated from the first echo using nilearn's compute_epi_mask function. An 

adaptive mask was then generated, in which each voxel's value reflects the number of echoes 

with 'good' data. A two-stage masking procedure was applied, in which a liberal mask (including 

voxels with good data in at least the first echo) was used for optimal combination, T2*/S0 

estimation, and denoising, while a more conservative mask (restricted to voxels with good data 

in at least the first three echoes) was used for the component classification procedure. A 

monoexponential model was fit to the data at each voxel using log-linear regression in order to 

estimate T2* and S0 maps. For each voxel, the value from the adaptive mask was used to 

determine which echoes would be used to estimate T2* and S0. Multi-echo data were then 

optimally combined using the T2* combination method (Posse et al., 1999).  

Principal component analysis based on the PCA component estimation with a Moving 

Average(stationary Gaussian) process (Li et al., 2007) was applied to the optimally combined 

data for dimensionality reduction. The following metrics were calculated: kappa, rho, countnoise, 

countsigFT2, countsigFS0, dice_FT2, dice_FS0, signal-noise_t, variance explained, normalized 

variance explained, d_table_score. Kappa (kappa) and Rho (rho) were calculated as measures 

of TE-dependence and TE-independence, respectively. A t-test was performed between the 

distributions of T2*-model F-statistics associated with clusters (i.e., signal) and non-cluster 

voxels (i.e., noise) to generate a t-statistic (metric signal-noise_z) and p-value (metric signal-

noise_p) measuring relative association of the component to signal over noise. The number of 

significant voxels not from clusters was calculated for each component. Independent component 

analysis was then used to decompose the dimensionally reduced dataset. The following metrics 

were calculated: kappa, rho, countnoise, countsigFT2, countsigFS0, dice_FT2, dice_FS0, 
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signal-noise_t, variance explained, normalized variance explained, d_table_score. Kappa 

(kappa) and Rho (rho) were calculated as measures of TE-dependence and TE-independence, 

respectively. A t-test was performed between the distributions of T2*-model F-statistics 

associated with clusters (i.e., signal) and non-cluster voxels (i.e., noise) to generate a t-statistic 

(metric signal-noise_z) and p-value (metric signal-noise_p) measuring relative association of the 

component to signal over noise. The number of significant voxels not from clusters was 

calculated for each component. Next, component selection was performed to identify BOLD 

(TE-dependent), non-BOLD (TE-independent), and uncertain (low-variance) components using 

the Kundu decision tree (v2.5 (Kundu et al., 2013)). This workflow used numpy (Van Der Walt et 

al., 2011), scipy (Jones et al., 2001), pandas (McKinney, 2010), scikit-learn (Pedregosa et al., 

2011), nilearn, and nibabel (Brett et al., 2019). This workflow also used the Dice similarity index 

(Dice, 1945; Sorensen, 1948). 

 For every run of BOLD data, we manually inspected the noise/signal classification from 

MEICA and adjusted classification where needed. This strategy of manual inspection is viable in 

the context of small sample studies like ours, and is a major strength of the PFM approach. Only 

components classified as signal were used for all analyses. Based on the 6 rigid body 

parameters derived via retrospective motion correction, we calculated frame-wise displacement 

(FD (Power et al., 2012)). Motion parameters were low-pass filtered (threshold set at 0.1 Hz) 

before FD computation so as to reduce the impact of respiratory artifact of estimates of head 

motion (Fair et al., 2020). To identify high motion frames, we set a threshold of 0.08 mm on the 

FD vector. Global signal was calculated as the average of all voxels within a brain mask. 

Following optimal combination and MEICA, data underwent temporal bandpass filtering with 

frequencies between 0.005 Hz and 0.1 Hz being retained. Global signal and its first derivative 

constituted the only nuisance regressors. Following noise correction, cortical data were 

projected onto a surface using a previously described approach (Gordon et al., 2017). Data 
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were smoothed with a geodesic 2D (surface) or Euclidean 3D (volumetric) Gaussian kernel of 

σ = 2.55 mm. Volumetric smoothing was done within each subvolume including bilateral red 

nuclei (described in manual tracing of the red nucleus).  

 Improving brainstem signal-to-noise ratio 

The brainstem is the most difficult part of the brain to acquire high quality functional 

neuroimaging data. Distance from the head coils inherently makes the SNR lower here than in 

the cortex. Additionally, the optimal echo time is different in the brainstem (and varies across the 

brainstem) than the cerebral cortex, in part due to high concentration of iron. Given that most 

studies optimize scanning parameters for the cortex, common scanning parameters are poorly 

suited for the brainstem. Also, we encountered sources of noise at the individual level that were 

difficult to characterize with standard denoising with motion and anatomical regressors. In total, 

these limitations with current brainstem imaging required a specialized denoising strategy that 

would allow us to acquire high quality cortical data along with brainstem data. The first part of 

this strategy was the implementation of a recently developed thermal denoising approach called 

NORDIC (Dowdle et al., 2023), which greatly reduces noise. By acquiring multi-echo data and 

employing optimal combination of echoes on a voxelwise manner, we were able to have an 

optimized echo time for both cortical and brainstem data. Also, MEICA allows for a substantial 

improvement in SNR (Lynch et al., 2020). We utilized MEICA and manually modified noise 

components on a run-by-run level, in a process that would be excessively burdensome for large 

sample size studies, but is viable in a PFM framework. Finally, we collected a far greater 

amount of data on an individual level than the vast majority of groups, allowing for a ‘brute force’ 

approach for SNR improvement. When we were incapable of applying these denoising 

strategies (in the case of group averaged datasets and single echo datasets) we relied on 

massive sample sizes to improve SNR. In total, our results allowed us to overcome the most 

pressing issue on brainstem functional imaging, namely, the low SNR. The strategies employed 
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in the paper demonstrate the feasibility of brainstem neuroimaging and can be used to 

investigate clinically relevant structures like the substantia nigra and periaqueductal grey.  

 

Defining the red nucleus 

 Unlike many brainstem nuclei, the red nucleus is clearly visible on T2-weighted images as 

a hypo-intensity (Fig 1A). Individual level red nucleus was hand drawn on T2-weighted native 

space images (Fig 1A) by a single experimenter (S.R.K.) and transformed to MNI space for 

subsequent analyses. Publicly available brainstem atlases were used as a reference for the red 

nucleus to assist in manual drawing (brainstem navigator atlas 

https://www.nitrc.org/projects/brainstemnavig (Bianciardi et al., 2015)). For group average 

datasets, the red nucleus was again hand drawn but on a high resolution T2-weighted MNI 

template image.  

Cortical network identification 

 The Infomap algorithm (Rosvall & Bergstrom, 2008 : https://www.mapequation.org/) was 

used to assign vertices to communities, and the resulting communities were then assigned a 

network identity based on similarity to known group-average networks. The consensus network 

assignment, computed by aggregating across thresholds, was used as the cortical resting state 

networks (see SFig 2 for example assignments). The original 17 networks set described in MSC 

(ref to msc paper) was recently amended to account for the SCAN (Gordon et al., 2023). 

Red nucleus functional connectivity 

 Using the red nucleus as a seed we averaged the timeseries of red nucleus voxels to 

create a red nucleus timeseries and correlated this to brain. In cases of HCP and UKB, we instead 

averaged over rows in the dense connectivity file corresponding to the red nucleus. When 
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determining functional connectivity to red nucleus subdivisions, we simply repeated this process, 

but for the subdivision instead of the whole red nucleus.  

Winner-take-all analysis of red nucleus voxels 

 We used a previously established approach for assigning red nucleus voxels to bilateral 

cortical networks (Zheng et al., 2021). Described briefly, a voxel was assigned to the network that 

it had the largest correlation to, so long as that correlation was greater than zero. We excluded 

three sensory networks, two visual and one auditory, from possible assignment, because the red 

nucleus is not believed to be involved in these processes, and because potential assignment to 

these three networks would be likely artifactual potentially owing to partial volume effects with the 

third cranial nerve which passes through the red nucleus. Additionally, inconsistent and small 

Infomap cortical assignment to the anterior and posterior medial temporal networks led us to 

exclude these two networks as well. In total, there were 13 networks that red nucleus voxels could 

be assigned.  

Clustering 

 Clustering of the red nucleus was based on cortical connectivity, specifically the 

correlation between each red nucleus voxel and the 13 bilateral resting state networks similar to 

previous clustering approaches to other subcortical structures (Greene et al., 2020). We used 

hierarchical clustering on the Euclidean distance between cortical connectivity strength with 

Ward’s method (Murtagh & Legendre, 2014; Ward Jr, 1963). Using the NBclust R package we 

assessed clustering performance with the number of clusters ranging from 2 to 13 using more 

than 20 metrics (Charrad et al., 2014). For each number of clusters, a score for all clustering 

metrics was computed, and cluster performance was ranked (e.g. the number of clusters with the 

largest silhouette index scored a rank of 1). For each metric, a number of clusters “won” when it 

had the best performance for that specific clustering metric. The number of clusters chosen was 
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based on a majority rule where the number of clusters with the most total victories (first place for 

each metric) was determined to be the best overall.  

Thalamus segmentation 

The Thalamus-Optimized Multi-Atlas Segmentation (THOMAS v 2.1) (Jh et al., 2019) is a 

method for identification of nuclei, particularly the ventral intermediate nucleus that has been 

colocalized with the segment labelled the ventral part of the Ventro-Lateral-Posterior nucleus (Su 

et al., 2020). 

 To segment the thalamic nuclei on our precision mapping participant, we used the 

hips_thomas.csh function from the version 2. 1 that has been validated for use of T1 acquisition 

only (Pfefferbaum et al., 2023) and that is available on docker 

(https://github.com/thalamicseg/hipsthomasdocker). We used the average T1 acquisition that has 

been produced for the registration of all functional data. For group averaged data we used an MNI 

space transformation of a probabilistic THOMAS segmentation 

(https://zenodo.org/record/5499504).  

Projecting to the cerebellum 

Cerebellar connectivity values were mapped onto a cerebellar flat map with the SUIT 

toolbox (Diedrichsen & Zotow, 2015).  

Statistics 

We used a rotation-based null model to test if red nucleus connectivity was selective for 

networks or random (e.g. Fig 2B). In this approach, cortical resting state networks were rotated 

by a random amount around a spherical expansion of the cortical surface 1000 times (Gordon et 

al., 2016). For each rotation, we calculated the measure of interest (e.g. red nucleus connectivity 

strength to the rotated network). A p-value was calculated by comparing the true value against 
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the values obtained through random rotations. When multiple comparisons across networks was 

performed, a Bonferroni correction for network number was used to control the false positive rate.  

Visualization 

 The distribution of functional connectivity values differs based on dataset, in part owing to 

different denoising decisions. Therefore, direct numerical comparisons across datasets is not 

appropriate. Thus, to facilitate comparison, in almost all figures, RSFC values were thresholded 

to be the top 20 percent of the given image. Supplemental Figure 2 demonstrates that this 

threshold does not obscure red nucleus connectivity. In group averaged subcortical data we 

noticed a pattern in which the edges of structures (e.g. thalamus) were the most likely to contain 

extreme values. Even an inspection of dense connectivity matrices shows an obvious effect of 

extreme values around the edge of volume structures. It is not entirely clear why this is the case. 

One possibility is that sub-volume constrained averaging may cause edge voxels to be noisier 

because they are averaged with fewer voxels, thus promoting extreme values. Thus, we excluded 

edge voxels from the thalamus exclusively for group average datasets. We accomplished this by 

minimally eroding the thalamus ROI by 3 mm. When examining Cornell data in the thalamus, we 

noticed that red nucleus signal was being smoothed into the ventral thalamus, leading to 

extremely large and erroneous connectivity values. To address this, we masked out thalamus 

voxels that were included in a 5 mm dilation of the bilateral red nucleus.   
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