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Abstract 
A pervasive dilemma in neuroimaging is whether to prioritize sample size or scan duration given 

fixed resources. Here, we systematically investigate this trade-off in the context of brain-wide 

association studies (BWAS) using resting-state functional magnetic resonance imaging (fMRI). 

We find that total scan duration (sample size × scan duration per participant) robustly explains 

individual-level phenotypic prediction accuracy via a logarithmic model, suggesting that sample 

size and scan duration are broadly interchangeable. The returns of scan duration eventually 

diminish relative to sample size, which we explain with principled theoretical derivations. When 

accounting for fixed costs associated with each participant (e.g., recruitment, non-imaging 

measures), we find that prediction accuracy in small-scale BWAS might benefit from much 

longer scan durations (>50 min) than typically assumed. Most existing large-scale studies might 

also have benefited from smaller sample sizes with longer scan durations. Both logarithmic and 

theoretical models of the relationships among sample size, scan duration and prediction accuracy 

explain well-predicted phenotypes better than poorly-predicted phenotypes. The logarithmic and 

theoretical models are also undermined by individual differences in brain states. These results 

replicate across phenotypic domains (e.g., cognition and mental health) from two large-scale 

datasets with different algorithms and metrics. Overall, our study emphasizes the importance of 

scan time, which is ignored in standard power calculations. Standard power calculations 

inevitably maximize sample size at the expense of scan duration. The resulting prediction 

accuracies are likely lower than would be produced with alternate designs, thus impeding 

scientific discovery. Our empirically informed reference is available for future study design: 

WEB_APPLICATION_LINK 
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Introduction 
A fundamental question in systems neuroscience is how individual differences in brain structure 

and function (as measured by MRI) are related to common variation in phenotypic traits, such as 

cognitive ability or physical health. Following our previous study (Marek et al., 2022), we define 

brain wide association studies (BWAS) as studies of the associations between common inter-

individual variability in human brain structure/function and phenotypes. An important subclass 

of BWAS seeks to predict individual-level phenotypes using machine learning. Individual-level 

prediction is important for addressing basic neuroscience questions and critical for precision 

medicine (Finn et al., 2015; Gabrieli et al., 2015; Woo et al., 2017; Bzdok & Ioannidis, 2019; 

Eickhoff & Langner, 2019; Varoquaux & Poldrack, 2019).  

 

Many BWAS are underpowered, leading to low reproducibility and inflated prediction 

performance (Button et al., 2013; Arbabshirani et al., 2017; Bzdok & Meyer-Lindenberg, 2018; 

Kharabian Masouleh et al., 2019; Elliott et al., 2020; Poldrack et al., 2020). Larger sample sizes 

increase reliability of brain-behavior associations (Tian & Zalesky, 2021; Chen et al., 2023) and 

individual-level prediction accuracy (He et al., 2020; Schulz et al., 2020). Indeed, a recent study 

suggested that reliable BWAS require thousands of participants (Marek et al., 2022), although 

certain multivariate approaches might reduce sample size requirements (Chen et al., 2023). 

 

In parallel, other studies have emphasized the importance of long functional MRI (fMRI) scan 

duration per participant during both resting and task states, which leads to improved data quality 

and reliability (Nee, 2019; Noble et al., 2019; Elliott et al., 2020; Lynch et al., 2020), as well as 

new insights into the brain (Laumann et al., 2015; Newbold et al., 2020; Gordon et al., 2023). 

When sample size is fixed, increasing resting-state fMRI scan duration per participant improves 

individual-level prediction accuracy of some cognitive measures (Feng et al., 2023).  

 

Therefore, in a world with infinite resources, fMRI-based BWAS should maximize both sample 

size and scan duration for each participant. However, in reality, BWAS investigators have to 

decide between scanning more participants (for a shorter duration), or fewer participants (for a 

longer duration) within a fixed scan budget. Furthermore, there is a fundamental asymmetry 

between sample size and scan duration per participant because of inherent overhead cost 

associated with each participant, which can be quite substantial, e.g., when recruiting from a rare 

population. Surprisingly, the exact trade-off between sample size and scan duration per 

participant has never been studied. We emphasize that this trade-off is an issue for the design of 

small studies, as well as large-scale collection efforts with thousands of participants, given 

competing interests among multiple investigators and limited participant availability.  

 

Here, we used the Adolescent Brain and Cognitive Development (ABCD) study and the Human 

Connectome Project (HCP) to systematically characterize the effects of sample size and scan 

duration of resting-state fMRI on BWAS prediction accuracy and reliability. We considered 37 

phenotypes from the ABCD study and 59 phenotypes from the HCP dataset, spanning cognition, 

personality, emotion, physicality, well-being and mental health. We also explored how overhead 

cost per participant can impact the trade-off between sample size and scan duration in 

maximizing prediction accuracy within a fixed scan budget, thus providing an empirical 

reference for future study design. 
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Results 
Larger sample size can compensate for shorter scan duration & vice versa 

For each participant, we calculated a 419 × 419 resting-state functional connectivity (RSFC) 

matrix using the first T minutes of fMRI data (Schaefer et al., 2018). T was varied from 2 

minutes to the maximum scan time in each dataset in intervals of 2 minutes. The RSFC matrices 

(from the first T minutes) served as input features to predict a range of phenotypes in each 

dataset using kernel ridge regression (KRR) via a nested inner-loop cross-validation procedure. 

Details of the phenotypes are found in Methods. The analyses were repeated with different 

numbers of training participants (i.e., different training sample size N). Within each cross-

validation loop, test participants were fixed across different training set sizes, so that prediction 

accuracy was comparable across different training set sizes (Figure 1A). The whole procedure 

was repeated 50 times and averaged to yield stable results (Figure 1A). 

 

 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2024. ; https://doi.org/10.1101/2024.02.16.580448doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.16.580448
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1. Increasing training participants and scan duration per participant lead to higher 

prediction accuracy of phenotypes. (A) Prediction workflow for the HCP dataset. The 

participants were split into 10 folds. One fold was set aside to be the test set. The remaining folds 

comprised the training set. Cross-validation was performed on the training set to select the best 

hyperparameter(s). The best hyperparameter(s) were then used to fit a final model from the full 

training set, which was then used to predict phenotypes in the test set. To vary training set size, 

each training fold was subsampled and the whole inner-loop nested cross-validation procedure 

was repeated with the resulting smaller training set. As shown in the panel, the test set remained 

the same across different training set sizes, so that prediction accuracy was comparable across 

different sample sizes. Each fold took a turn to be the test set (i.e., 10-fold inner-loop nested 

cross-validation) and the procedure was repeated with different amounts of fMRI data per 

participant T (not shown in panel). For stability, the entire procedure was repeated 50 times and 

averaged. A similar workflow was used in the ABCD dataset. We note that in the case of HCP, 

care was taken so siblings were not split across folds, while in the case of ABCD, participants 

from the same site were not split across folds. (B) Contour plot of prediction accuracy (Pearson’s 

correlation) of the cognitive factor score as a function of the scan time T used to generate the 

functional connectivity matrix, and the number of training participants N used to train the 

predictive model in the Adolescent Brain and Cognitive Development (ABCD) and Human 

Connectome Project (HCP) datasets. Increasing training participants and scan time both 

improved prediction performance. The * in both figures indicates that all available participants 

were used, therefore the sample size will be close to, but not exactly the number shown. Multiple 

additional control analyses are found in Figures S1 to S5.   

 

 

 

We first considered the cognitive factor score from each dataset because the cognitive factor 

scores were previously found to exhibit the highest prediction accuracy across all phenotypes 

(Ooi et al., 2022). Figure 1B shows the prediction accuracy (Pearson’s correlation) of the 

cognitive factors in the HCP and ABCD datasets as a function of both scan time per participant 

and number of training participants. Along a black iso-contour line, the prediction accuracy is 

(almost) constant even though scan duration and sample size are changing. Consistent with 

previous literature (He et al., 2020; Schulz et al., 2023), increasing the number of training 

participants (when scan time per participant is fixed) improved prediction performance. 

Similarly, increasing scan time per participant (when number of training participants is fixed) 

also improved prediction performance (Feng et al., 2023). 

 

Similar conclusions were obtained when we measured prediction accuracy using coefficient of 

determination (COD) instead of Pearson’s correlation (Figure S1), computed RSFC using the 

first T minutes of uncensored data (Figure S2), did not perform censoring of high motion frames 

(Figure S3), or utilized linear ridge regression (LRR) instead of KRR (Figures S4 & S5).  
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Sample size & scan time per participant are interchangeable  

Next, we characterised the relative contributions of sample size and scan duration per participant 

to the prediction of different phenotypes. Figure 2A shows that the prediction accuracy of the 

cognitive factors increases with total scan duration (# training participants × scan time per 

participant), suggesting that sample size and scan time per participant were broadly 

interchangeable.   

 

In the HCP dataset, we observed diminishing returns of scan time with respect to sample size for 

scan time beyond 30 minutes. For example, scanning 700 participants for 14 minutes per 

participant (with a total scan time of 9800 minutes) and scanning 300 participants for 58 minutes 

(with a total scan time of 17400 minutes) produced similar prediction accuracy (arrows in Figure 

2A). The diminishing returns of scan time was not present in the ABCD study, which had a 

maximum scan time of 20 minutes.  

 

Looking beyond the cognitive factor scores, we focused on 28 (out of 59) HCP phenotypes and 

23 (out of 37) ABCD phenotypes that were reasonably well-predicted with maximum prediction 

accuracies of r > 0.1 (Table S1A). Upon visual inspection, we found that 89% (i.e., 25 out of 28) 

HCP phenotypes exhibited diminishing returns of scan time beyond 20-30 minutes. Diminishing 

returns were not observed for all 23 ABCD phenotypes.  

 

Overall, this suggests that for almost all phenotypic measures (that were reasonably well-

predicted), sample size and scan duration per participant were broadly interchangeable for the 

ABCD study and up to 30 minutes in the HCP dataset. As will be seen in a later section, the 

diminishing returns of scan time in the HCP dataset might potentially be the result of inter-

individual differences in brain states captured by the HCP study design.  

 

Total scan duration explains prediction accuracy via a logarithmic trend 

Among the 25 HCP and all 23 ABCD phenotypes exhibiting broad interchangeability of sample 

size and scan duration, a logarithmic pattern was evident in 76% (19 out of 25) HCP and 74% 

(17 out of 23) ABCD phenotypes (Table S1A; Figures S6 and S7). To assess the universality of a 

logarithmic relationship between total scan time and prediction accuracy, for each of the 19 HCP 

and 17 ABCD phenotypes, we fitted a logarithm curve (with two free parameters) between 

prediction accuracy and total scan time (ignoring data beyond 20 minutes per participant). The 

logarithm fit allowed phenotypic measures from both datasets to be plotted on the same 

normalized prediction performance scale (Figures 2B). See Methods for details.  
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Figure 2. Sample size and scan time are broadly interchangeable for individual-level 

phenotypic prediction. (A) Scatter plot showing prediction accuracy (Pearson’s correlation) of 

the cognitive factor as a function of total scan time (defined as # training participants x scan time 

per participant). Each color shade represents different number of total participants used to train 

the prediction algorithm. Plots are repeated for the Adolescent Brain and Cognitive Development 

(ABCD) study and Human Connectome Project (HCP). The * indicates that all available 

participants were used, therefore the sample size will be close to, but not exactly the number 

shown. There was a diminishing returns of scan time per participant beyond 30 minutes in the 

HCP dataset; data points with more than 30 minutes of scan time are shown with black outlines. 

As shown by the black arrows, scanning 700 participants for 14 minutes and 300 participants for 

58 minutes yielded the same prediction accuracy, although the total scan duration of the former 

was almost 2 times lower: 700 × 14 = 9800 vs 300 × 58 = 17400. In the ABCD dataset, where 

maximum scan time per participant was 20 minutes, the diminishing returns of scan time was not 

observed. (B1) Scatter plot showing normalized prediction accuracy of the cognitive factor 

scores and 34 other phenotypes versus total scan duration ignoring data beyond 20 minutes of 

scan time. Cognitive, mental health, personality, physicality, emotional and well-being measures 

are shown in shades of red, grey, blue, yellow, green and pink, respectively. The logarithmic 

black curve suggests that total scan time explained prediction performance well across 

phenotypic domains and datasets. (B2) Same as Figure 2B1, except the horizontal axis (total scan 

duration) is plotted on a logarithm scale. The linear black line suggests that the logarithm of total 

scan duration explained prediction performance well across phenotypic domains and datasets. 

 

 

 

The black curve (Figures 2B) indicated the quality of the logarithmic fit of the phenotypes (dots 

in Figure 2B). Overall, total scan duration explained prediction accuracy across HCP and ABCD 

phenotypes remarkably well: coefficient of determination (COD) or R2 = 0.88 and 0.89 

respectively. For example, scanning 300 participants for 28 minutes (total scan time = 300 × 28 

= 8400 minutes) in the HCP dataset, or 600 participants for 14 minutes (total scan time = 600 × 

14 = 8400 minutes) in the ABCD dataset yielded very similar normalized prediction accuracies 

for the cognitive factor scores (arrows in Figure S8). Quantitative goodness of fit measures are 

reported in Table S1B. 

 

The logarithm curve was also able to explain prediction accuracy well across different prediction 

algorithms (KRR and LRR) and different performance metrics (COD and r), as illustrated for the 

cognitive factor scores in Figure S8. The logarithm fit was also excellent when we considered 30 

minutes of scan time, instead of 20 minutes (Figure S9).  
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As scan time increases, sample size becomes more important than scan time 

In the previous sections, we showed that sample size and scan time per participant were broadly 

interchangeable in the ABCD study and up to 20-30 minutes of scan time per participant in the 

HCP dataset. To examine this interchangeability more closely, we considered the prediction 

accuracy of the HCP factor score across six combinations of sample size and scan time totalling 

6000 minutes of total scan duration (Figure 3A).  

 

We observed that prediction accuracy decreased with increasing scan time per participant, 

despite maintaining 6000 minutes of total scan duration (Figure 3A). However, the accuracy 

reduction was modest below 30 minutes of scan time, and was not significant. Similar 

conclusions were obtained for all 19 HCP and 17 ABCD phenotypes that followed a logarithmic 

fit (Figure S10).  

 

The observation that increasing scan time per participant has diminishing returns relative to 

sample size suggests that a simple logarithmic model does not explain all the factors that 

contribute to prediction accuracy. In the next section, we derived a mathematical theory that 

better explains the relative contributions of scan time and sample size to prediction as 

empirically observed. 

 

 

 
Figure 3. As scan time increases, sample size eventually becomes more important than scan 

time. (A) Prediction accuracy of the HCP cognition factor score when total scan duration is fixed 

at 6000 minutes, while varying scan time per participant from 10 to 60 minutes. Each violin plot 

shows the distribution of prediction accuracies across 50 random cross-validation splits. * 

indicates that the distributions of prediction accuracies were significantly different after false 

discovery rate (FDR) q < 0.05 correction. (B) Scatter plot of prediction accuracy against total 

scan duration for a representative phenotype (spatial orientation) in the HCP dataset. The curves 

were obtained by fitting a theoretical model to the prediction accuracies of the cognitive factor 

score. The theoretical model explains why sample size is more important than scan time (see 

main text).  
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Theoretical relationship of prediction accuracy with sample size & scan time explains why 

sample size is more important than scan time 

Even though sample size and scan time are broadly interchangeable, there is a diminishing return 

of scan time per participant relative to sample size (Figure 3A). To gain insights into this 

phenomenon, we derived a closed-form mathematical relationship relating prediction accuracy 

(Pearson’s correlation) with scan time per participant 𝑇 and sample size 𝑁 under certain mild 

assumptions (see Methods). 

 

We found that prediction accuracy can be written as a function of sample size “𝑁” and total scan 

duration “𝑁𝑇”. The theoretical model with three free parameters was estimated by fitting to real 

data (Figure 1B), yielding an excellent fit with actual prediction accuracies for the 19 HCP and 

17 ABCD phenotypes (Figures 3B, S11 & S12): R2 = 0.89 for both datasets (Table S1B).  

 

Based on the estimated model parameters, we find that when 𝑇 is small, the 𝑁𝑇 term dominates 

the 𝑁 term, which explains the almost 1-to-1 interchangeability between scan duration and 

sample size for shorter scan duration. The existence of the 𝑁 term ensures that sample size is still 

slightly more important than scan time even for small 𝑇. As 𝑇 increases, the 𝑁 term becomes 

comparable and then dominates the 𝑁𝑇 term, so sample size becomes much more important than 

scan time. 

 

Taking a step back, we note that the theoretical model agreed with the intuition that larger 

sample size is necessary to capture inter-individual variability in both brain measures and 

phenotypes (Kharabian Masouleh et al., 2019), which cannot be achieved by just increasing scan 

duration per participant alone. Scan duration per participant is still important for accounting for 

within-individual variability. However, a larger sample size can still implicitly account for 

within-individual variation (Orban et al., 2020), which might explain why ultimately sample size 

is still slightly more important than scan duration per participant.  

 

Models work better for well-predicted phenotypes 

For phenotypes that were predicted with maximum prediction accuracies of Pearson’s r > 0.1, the 

logarithmic and theoretical models were able to explain the prediction accuracies well with an 

average explained variance >75% (Table S1B). If we loosened the prediction threshold to 

include phenotypes whose prediction accuracies (Pearson’s r) were positive in at least 90% of all 

combinations of sample size N and scan time T (Table S1A), the model fit was lower but still 

relatively high with average explained variance >67% (Table S1B).  

 

More generally, phenotypes with high overall prediction accuracies adhered to the logarithmic 

and theoretical models well (example in Figure 4A), while phenotypes with poor prediction 

accuracies resulted in poor adherence to both models (example in Figure 4B). Indeed, model fit 

for both models was strongly correlated with prediction accuracy across phenotypes in both 

datasets (Figures 4C to 4F). These findings suggest that the imperfect fit of the theoretical and 

logarithmic models for some phenotypes may be partially due to their poor intrinsic 

predictability, rather than due to true variation in their response patterns.  
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Figure 4. Logarithmic and theoretical models work better for well-predicted phenotypes. 

(A) Scatter plot of prediction accuracy against total scan duration for an exemplary phenotype 

with high prediction accuracy. (B) Scatter plot of prediction accuracy against total scan duration 

for an exemplary phenotype with low prediction accuracy. (C) Scatter plot of logarithmic model 

goodness-of-fit (coefficient of determination or COD) against prediction accuracies of different 

ABCD phenotypes. COD (also known as R2) is a measure of explained variance. Here, we 

considered phenotypes whose prediction accuracies (Pearson’s r) were positive in at least 90% of 

all combinations of sample size N and scan time T, yielding 42 HCP phenotypes and 33 ABCD 

phenotypes. Prediction accuracy (horizontal axis) was based on maximum scan time and sample 

size. For visualization, we plot a dashed black line by fitting to a monotonically increasing 

function. (D) Same as panel C but using theoretical (instead of logarithmic) model. (E) Same as 

panel C but using HCP (instead of ABCD) dataset. (F) Same as panel C, but using HCP (instead 

of ABCD) and using theoretical (instead of logarithmic) model. For all panels, logarithmic 

model fit was performed using up to 20 minutes of scan time per participant. For theoretical 

model fit, the maximum scan time per participant was used. 

 

 

 

State effects during fMRI scans weaken model adherence  

The theoretical model better matched the empirical data than the logarithmic model. However, 

there remain discrepancies, particularly in the HCP dataset, which sometimes showed decreases 

in prediction accuracy with increasing scan time (Figure S7). As noted above, some phenotypes 

likely fail to match the logarithmic or theoretical models because of intrinsically poor 

predictability. However, there were phenotypes that were reasonably well-predicted yet still 

exhibited a low fit to both logarithmic and theoretical models. For example, “Anger: 

Aggression” was reasonably well-predicted in the HCP dataset, but prediction accuracy was 

primarily improved by sample size and not scan time (Figure 5A). As scan time per participant 

increased, prediction accuracy appeared to increase, decrease and then increase again. This 

pattern was remarkably consistent across sample sizes (Figure 5A).  

 

We hypothesize that this might be due to state changes between or during resting-state scans 

(Wang et al., 2016; Bijsterbosch et al., 2017; Orban et al., 2020). For example, participants may 

come to scan sessions under different conditions that can affect brain measurements (e.g., 

fasted/fed, caffeinated or not, quality of sleep; Laumann et al., 2015; Poldrack et al., 2015; Yeo 

et al., 2015). Further, it is well known that arousal generally decreases during resting-state scans 

(Tagliazucchi & Laufs, 2014), which might increase or decrease prediction accuracy depending 

on the phenotype. To test this hypothesis, we randomized the fMRI run order for each participant 

and repeated the analysis (see Methods). In the case of “Anger: Aggression”, the prediction 

accuracies were now well-explained by the logarithmic and theoretical models (Figure 5B), 

although the diminishing returns of scan time still existed for certain phenotypes (Figure S13 and 

S14). 
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Figure 5. State effects during resting-state fMRI weaken adherence to logarithmic and 

theoretical models. (A) Scatter plot of prediction accuracy against total scan duration for the 

“Anger: Aggression” phenotype in the HCP dataset. Despite relatively high accuracy, the 

phenotype improved with larger sample size, but not scan time. As scan time per participant 

increases, prediction accuracy appeared to increase, decrease, then increase again. (B) Scatter 

plot of prediction accuracy against total scan duration for the “Anger: Aggression” phenotype in 

the HCP dataset after randomizing fMRI run order for each participant. Observe that the 

prediction accuracy now adheres strongly to the logarithmic and theoretical models. (C) Box 

plots showing goodness of fit to logarithmic and theoretical models before and after randomizing 

fMRI run order for a larger set of phenotypes in the ABCD dataset. Here, we considered all 

phenotypes whose prediction accuracies (Pearson’s r) were positive in at least 90% of all 

combinations of N and T. * indicates that goodness-of-fits were significantly different (after FDR 

correction with q < 0.05). (D) Same as panel C, but in the HCP dataset. For all panels, model fit 

was performed using the maximum scan time per participant. 
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Many studies would benefit from longer scan time per participant 

We have shown that investigators have the flexibility of attaining a specified prediction accuracy 

through different combinations of sample size and scan time per participant. To derive a 

reference for future studies, we fitted the theoretical model to the 17 HCP and 19 ABCD 

phenotypes, yielding 89% average explained variance (Table S1B). For each phenotype, the 

model was normalized by its maximum achievable accuracy (estimated by the theoretical 

model), yielding a fraction of maximum achievable prediction accuracy for every combination of 

sample size and scan time per participant. The fraction of maximum achievable prediction 

accuracy was then averaged across the 36 phenotypes (Figure 6A).  

 

For the purpose of study design, we need to consider the fundamental asymmetry between 

sample size and scan duration per participant because of inherent fixed overhead cost associated 

with each participant (including recruitment effort and non-fMRI scanning time), which can be 

substantial. Figure 6B illustrates the prediction accuracy that can be achieved with different total 

fMRI budgets, costs per hour of scan time and overhead cost per participant. The solid circles 

indicate the optimal scan time per participant leading to the highest prediction accuracy. 

 

There are three main observations (Figure 6B). First, larger total fMRI budgets, lower scan cost 

per hour and lower overhead cost per participant allowed for greater achievable prediction 

accuracy. Second, the optimal scan time increases with larger overhead cost per participant, 

lower total fMRI budget and lower scan cost per hour. Third, the optimal sample size decreases 

with larger overhead cost per participant, lower total fMRI budget and lower scan cost per hour. 

 

As an example, when total fMRI budget was $100K, scan cost was $500 per hour and overhead 

cost was $500 for each participant, the optimal prediction accuracy was achieved by scanning 

105 participants for 54 minutes per participant. As another example, when total fMRI budget was 

$10M, scan cost was $500 per hour and overhead cost was $500 for each participant, the optimal 

prediction accuracy was achieved by scanning 12,500 participants for 36 minutes per participant. 

Thus, many studies, including very large-scale studies, might have benefited from increasing 

scan time per participant than typically assumed.  

 

Similar conclusions were reached if we only considered a subset of 13 phenotypes that exhibited 

strong agreement with the theoretical model without serious over-shoot or under-shoot (Figure 

S15), all 36 phenotypes after randomizing the run order (Figure S16) and a subset of 17 

phenotypes that exhibited strong agreement with the theoretical model without serious over-

shoot or under-shoot after randomizing run order (Figure S17).  
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Figure 6. Empirical reference for balancing sample size and scan duration while 

accounting for fixed costs per participant to optimally design BWAS. (A) Fraction of 

maximum achievable prediction accuracy as a function of sample size and scan time per 

participant. The theoretical model was fitted to 36 HCP and ABCD phenotypes, yielding 89% 

average explained variance (Table S1B). For each phenotype, the model was normalized by its 

maximum achievable accuracy (based on the theoretical model), yielding a fraction of maximum 

achievable prediction accuracy for every combination of sample size and scan time per 

participant. The fraction of maximum achievable prediction accuracy was then averaged across 

the 36 phenotypes yielding the plot. (B) Fraction of maximum achieve prediction accuracy as a 

function of total fMRI budget, scan cost per hour and overhead cost per participant. The solid 

circles indicate location of the maximum prediction accuracy. Black contour around a circle 

indicates that the optimal combination of sample size and scan time was beyond the edge of the 

graph (i.e., more than 200 minutes of scan time). As an example, when total fMRI budget was 

$10M, scan cost was $500 per hour and overhead cost was $500 for each participant, the optimal 

prediction accuracy was achieved by scanning 12,500 participants for 36 minutes per participant. 

Overall, this suggests that many existing studies, including very large-scale studies, might have 

benefitted from increasing scan time per participant.  

 

 

 

We note that these results (Figure 6) do not account for second-order effects. For example, 

certain populations (e.g., children) might not be able to handle more than 1 hour of MRI 

scanning at a time, so longer scans would need to be broken up into multiple sessions, yielding 

an overhead cost associated with each session, and so on. As another example, beyond a certain 

sample size, multi-site data collection becomes necessary, which increases overhead cost per 

participant. Our web application (WEB_APPLICATION_LINK) allows for more flexible usage.  

 

 

Conclusions are similar between prediction accuracy & BWAS reliability 

We next turn our attention to the effects of sample size and scan duration per participant on the 

reliability of BWAS (Marek et al., 2022) using a previously established split-half procedure 

(Figure S18A; Tian & Zalesky, 2021; Chen et al., 2023). Similar conclusions were obtained for 

both univariate and multivariate BWAS reliability, except that diminishing returns of scan time 

occurred beyond 10 minutes per participant, instead of 20-30 minutes of scan time for prediction 

accuracy (Figures S18 to S32).   

 

However, we strongly recommend that prediction accuracy, instead of reliability should be 

prioritized during study design. The reason is that reliability does not imply validity (Schmidt et 

al., 2000; Noble et al., 2019). For example, hardware artifacts may appear reliably in 

measurements without having any biological relevance. In the case of resting-state fMRI, reliable 

BWAS features might not be actually predictive of individual-level phenotypes.  
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Discussion 
Neuroimaging studies are always confronted with the difficult decision of how to allocate fixed 

resources for an optimal study design. Here, we systematically investigate the trade-off between 

maximising scan duration and sample size in the context of predicting phenotypes from resting 

state fMRI data. We found that sample size and scan time per participant are broadly 

interchangeable. Prediction accuracy was explained remarkably well by a simple logarithmic 

model and a more complex theoretical model. The model fits were consistent across many 

phenotypes across multiple phenotypic domains and two different datasets, suggesting strong 

generalizability of these findings. When accounting for overhead cost per participant, we found 

that future study designs might benefit from longer scan durations per participant than those 

employed in existing studies. 

 

Overall, our results suggest an advantage to flexibly modifying study designs based on 

population- and site-specific characteristics. For example, a researcher seeking to study 

unmedicated 9-10 year-old children with autism spectrum disorder who are able to stay still 

during MRI scans (i.e., higher overhead cost per participant) might find it more economical to 

increase the scan time for each participant in order to achieve the maximum possible prediction 

accuracy. Another researcher facing particularly high per-hour scan charges might choose to 

decrease scan times and increase sample sizes. 

 

More broadly, our results strongly argue against the common practice of employing traditional 

power analyses, whose only inputs are sample size, to inform BWAS design. Because such 

power analyses inevitably point towards maximizing sample size, scan times then become 

minimized under budget constraints. The resulting prediction accuracies are likely lower than 

would be produced with alternate designs, thus impeding scientific discovery. 

 

To more accurately enable flexible decision making under varying constraints and inform study 

planning, we have provided a web application (WEB_APPLICATION_LINK) that estimates the 

fraction of maximum prediction accuracy that can be achieved with different sample size, scan 

duration per participant and overhead cost per participant, together with additional factors. For 

example, certain demographic and patient populations might not be able to tolerate longer scans, 

so an additional factor will be the maximum scan duration in each MRI session. As another 

example, beyond a certain sample size, multi-site data collection becomes a necessity, resulting 

in higher overhead costs.  

 

An important limitation is that the empirically informed reference is less useful for poorly 

predicted phenotypes, which predominantly included non-cognitive phenotypes (Figure 4) 

There are two non-exclusive reasons for poorly predicted phenotypes. One reason is that the 

measurement of the phenotype might not be reliable or valid (Uher, 2015; Nikolaidis et al., 2022; 

Gell et al., 2023), suggesting the need to improve the measurement of the phenotype. A second 

reason is that there may only be a weak relationship between the phenotype and resting-state 

fMRI, in which case, other imaging modalities might be worth exploring. 

 

Another caveat is that the empirically informed reference is less useful for phenotypes whose 

prediction accuracies are highly influenced by inter-individual differences in brain states during 

resting-state fMRI (Figure 5), potentially due to level of arousal (Bijsterbosch et al., 2017). This 
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appeared to be a larger problem for the HCP dataset, which involved significantly longer scan 

time than the ABCD dataset and was obtained in two different scan sessions. By exploring the 

interactions between brain states and these phenotypes, future work could potentially develop 

better brain-based predictions of these phenotypes.  

 

Furthermore, it is important to note that in addition to economic factors, the representativeness 

and diversity of the data sample and their generalizability to subpopulations are also important to 

consider (Benkarim et al., 2022; Greene et al., 2022; Li et al., 2022; Kopal et al., 2023). Finally, 

not all studies are interested in cross-sectional relationships between brain and non-brain-

imaging phenotypes. For example, the use of individual-level networks for brain stimulation 

treatment of mental disorders (Cash et al., 2021; Lynch et al., 2022) or neurosurgical planning 

(Boutet et al., 2021), might require higher per-participant quantities of resting-state fMRI data 

for accurate individual-level network estimation (Laumann et al., 2015; Braga & Buckner, 2017; 

Gordon et al., 2017). 

 

Conclusion 
We find that sample size and scan time per participant are broadly interchangeable for brain-

wide association studies (BWAS), although there are eventually diminishing returns of scan time 

per participant with respect to sample sizes. When accounting for fixed overhead costs per 

participant, we find that most studies (including large-scale studies) might benefit from greater 

scan time per participant than previously assumed. Our findings establish an empirically 

informed reference for calibrating scan times and sample sizes to optimize the study of how 

inter-individual variation in brain network architecture is related with individual differences in 

behavior. 
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Methods 
Datasets, phenotypes and participants 

Following previous studies, we considered 58 HCP phenotypes (Kong et al., 2019; Li et al., 

2019) and 36 ABCD phenotypes (Chen et al., 2022; Chen et al., 2023). We additionally consider 

a cognition factor score derived from all phenotypes from each dataset (Ooi et al., 2022), 

yielding a total of 59 HCP and 37 ABCD phenotypes (see Tables S3 and S4). 

 

In this study, we used participants from the HCP WU-Minn S1200 release. We filtered 

participants from Li’s set of 953 participants (Li et al., 2019), excluding participants who did not 

have at least 40 minutes of uncensored data (censoring criteria are discussed under “Image 

Processing”) and did not have the full set of the 59 non-brain-imaging phenotypes (henceforth 

referred to as phenotypes) that we investigated. This resulted in a final set of 792 participants 

with demographics found in Table S5. 

 

We additionally considered participants from the ABCD 2.0.1 release. We filtered participants 

from Chen’s set of 5260 participants (Chen et al., 2023). We excluded participants who did not 

have at least 15 minutes of uncensored resting-fMRI data (censoring criteria are discussed under 

“Image Processing”) and did not have the full set of the 37 phenotypes that we investigated. This 

resulted in a final set of 2565 participants with demographics found in Table S5. 

 

Image processing 

For the HCP dataset, the MSMAll ICA-FIX resting state scans were used (Glasser et al., 2013). 

Global signal regression has been shown to improve behavioral prediction (Li et al., 2019), so we 

further applied global signal regression (GSR) and censoring, consistent with our previous 

studies (Li et al., 2019; He et al., 2020; Kong et al., 2021). The censoring process entailed 

flagging frames with either FD > 0.2mm or DVARS > 75. The frame immediately before and 

after flagged frames were marked as censored. Additionally, uncensored segments of data 

consisting of less than 5 frames were also censored during downstream processing.  

 

For the ABCD dataset, the minimally processed resting state scans were utilized (Hagler et al., 

2019). Processing of functional data was performed in line with our previous study (Chen et al., 

2022). Specifically, we additionally processed the minimally processed data with the following 

steps. (1) The functional images were aligned to the T1 images using boundary-based 

registration (Greve & Fischl, 2009). (2) Respiratory pseudomotion motion filtering was 

performed by applying a bandstop filter of 0.31-0.43Hz (Fair et al., 2020). (3) Frames with FD > 

0.3mm or DVARS > 50 were flagged. The flagged frame, as well as the frame immediately 

before and two frames immediately after the marked frame were censored. Additionally, 

uncensored segments of data consisting of less than 5 frames were also censored. (4) Global, 

white matter and ventricular signals, 6 motion parameters, and their temporal derivatives were 

regressed from the functional data. Regression coefficients were estimated from uncensored data. 

(5) Censored frames were interpolated with the Lomb-Scargle periodogram (Power et al., 2014). 

(6) The data underwent bandpass filtering (0.009Hz – 0.08Hz). (7) Lastly, the data was then 

projected onto FreeSurfer fsaverage6 surface space and smoothed using a 6 mm full-width half 

maximum kernel. 
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We derived a 419 × 419 RSFC matrix for each HCP and ABCD participant using the first T 

minutes of scan time. The 419 regions consisted of 400 parcels from the Schaefer parcellation 

(Schaefer et al., 2018), and 19 subcortical regions of interest (Fischl et al., 2002). T was varied 

from 2 to the maximum scan time in intervals of 2 minutes. This resulted in 29 RSFC matrices 

per participant in the HCP dataset (as there were 29 RSFC matrices generated from using the 

minimum amount of 2 minutes to the maximum amount of 58 minutes in intervals of 2 minutes), 

and 10 RSFC matrices per participant in the ABCD dataset (as there are 10 RSFCs generated 

from using the minimum amount of 2 minutes to the maximum amount of 20 minutes in intervals 

of 2 minutes). 

 

Prediction workflow 

The RSFC generated from the first T minutes were used to predict each phenotypic measures 

(previous section) using kernel ridge regression (KRR; He et al., 2020) within an inner-loop 

(nested) cross-validation procedure.  

 

Let us illustrate the procedure using the HCP dataset (Figure 1A). We began with the full set of 

participants. A 10-fold nested cross-validation procedure was used. Participants were divided in 

10 folds (first row of Figure 1A). We note that care was taken so siblings were not split across 

folds, so the 10 folds were not exactly the same sizes. For each of 10 iterations, one fold was 

reserved for testing (i.e., test set), while the remainder was used for training (i.e., training set). 

Since there were 792 HCP participants, the training set size was roughly 792 × 0.9 ≈ 700 

participants. The KRR hyperparameter was selected via a cross-validation of the training set. The 

best hyperparameter was then used to train a final KRR model in the training set and applied to 

the test set. Prediction accuracy was measured using Pearson’s correlation and coefficient of 

determination (Chen et al., 2022).  

 

The above analysis was repeated with different training set sizes achieved by subsampling each 

training fold (second and third rows of Figure 1A), while the test set remained identical across 

different training set sizes, so the results are comparable across different training set sizes. The 

training set size was subsampled from 200 to 600 (in intervals of 100). Together with the full 

training set size of approximately 700 participants, there were 6 different training set sizes, 

corresponding to 200, 300, 400, 500, 600 and 700.  

 

The whole procedure was repeated with different values of T. Since there were 29 values of T, 

there were in total 29 × 6 sets of prediction accuracies for each phenotypic measure. To ensure 

robustness, the above procedure was repeated 50 times with different splits of the participants 

into 10 folds to ensure stability (Figure 1A). The prediction accuracies were averaged across all 

test folds and all 50 repetitions.  

 

The procedure for the ABCD dataset followed the same principle as the HCP dataset. However, 

the ABCD dataset comprised participants from multiple sites. Therefore, following our previous 

studies (Chen et al., 2022; Ooi et al., 2022), we combined participants across the 22 imaging 

sites, yielding 10 site-clusters (Table S6). Each site-cluster had a minimum of 227 participants. 

Instead of the 10-fold inner-loop (nested) cross-validation procedure in the HCP dataset, we 

performed a leave-3-site-clusters-out inner-loop (nested) cross-validation (i.e., 7 site-clusters are 

used for training and 3 site-clusters are used for testing) in the ABCD dataset. This procedure 
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was performed for every possible split of the site clusters, resulting in 120 replications. The 

prediction accuracies were averaged across all 120 replications.  

 

Similar to the HCP, the analyses were repeated with different numbers of training participants, 

ranging from 200 to 1600 ABCD participants (in intervals of 200). Together with the full 

training set size of approximately 1800 participants, there were 9 different training set sizes. The 

whole procedure was repeated with different values of T. Since there were 10 values of T in the 

ABCD dataset, there were in total 10 × 9 values of prediction accuracies for each phenotype. 

 

A full table of prediction accuracies for every combination of sample size and scan time per 

participant can be found in the supplementary spreadsheet. 

 

Logarithmic fit of prediction accuracy with respect to total scan duration 

By plotting total scan time (number of training participants × scan duration per participant) 

against prediction accuracy for each phenotypic measure, we observed that for most measures, 

scanning beyond 20-30 minutes per participant did not improve prediction accuracy.  

 

Furthermore, visual inspection suggests that a logarithmic curve might fit well to each 

phenotypic measure when scan time per participant is 30 minutes or less. To explore the 

universality of a logarithmic relationship between total scan time and prediction accuracy, for 

each phenotypic measure 𝑝, we fitted the function 𝑦𝑝 = 𝑧𝑝𝑙𝑜𝑔(𝑡𝑝)  + 𝑘𝑝, where 𝑦𝑝 was the 

prediction accuracy for phenotypic measure 𝑝, and 𝑡𝑝 is the total scan time. 𝑧𝑝 and 𝑘𝑝 were 

estimated from data by minimizing the square error, yielding �̂�𝑝 and �̂�𝑝.  

 

In addition to fitting the logarithmic curve to different phenotypic measures, the fitting can also 

be performed with different prediction accuracy measures (Pearson’s correlation or coefficient of 

determination) and different predictive models (kernel ridge regression and linear ridge 

regression). Assuming the datapoints are well explained by the logarithmic curve, the normalized 

accuracies (𝑦𝑏 - �̂�𝑏)/�̂�𝑏  should follow a standard (𝑡)  curve across phenotypic measures, 

prediction accuracies, predictive models, and datasets. As an example, Figure 2B shows the 

normalized prediction performance of the cognitive factors for different prediction accuracy 

measures (Pearson’s correlation or coefficient of determination) and different predictive models 

(kernel ridge regression and linear ridge regression) across HCP and ABCD datasets.  

 

Fit of theoretically-motivated model of prediction accuracy, sample size and scan time 

We observed that sample size and scan time per participant did not contribute equally to 

prediction accuracy, with sample size playing a slightly more important role than scan time. To 

explain this observation, we derived a mathematical relationship relating the expected Pearson’s 

correlation between noisy brain measurements and non-brain-imaging phenotype with scan time 

and sample size.  

 

Based on a linear regression model with no regularization and assumptions including (1) 

stationarity of fMRI (i.e., autocorrelation in fMRI is the same at all timepoints), and (2) 

prediction errors are uncorrelated with errors in brain measurements, we found that  
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𝐸(�̂�) ≈ 𝐾0√
1

1 +
𝐾1

𝑁 +
𝐾2

𝑁𝑇

, 

 

where 𝐸(�̂�) is the expected correlation between regression weights estimated from noisy brain 

measurements and the observed phenotype. 𝐾0 is related to the ideal association between brain 

measurements and phenotypes, attenuated by phenotype reliability. 𝐾1 is related to the true 

association between brain measurements and phenotype. 𝐾2 is related to brain-phenotype 

prediction errors due to brain measurement inaccuracies. Full derivations can be found in 

Supplementary Methods Sections 1.1 and 1.2.  

 

Based on the above equation, we fitted the following function 𝑦𝑝 = 𝐾0,𝑝√
1

1+𝐾1,𝑝/𝑁+𝐾2,𝑝/(𝑁𝑇)
, 

where 𝑦𝑝 was the prediction accuracy for phenotypic measure 𝑝, 𝑁 was the sample size and 𝑇 

was the scan time per participant. 𝐾0,𝑝, 𝐾1,𝑝 and 𝐾2,𝑝 were estimated by minimizing the mean 

squared error between the above functional form and actual observation of 𝑦𝑝 using gradient 

descent.   

 

Analysis of state effects 

In the original analysis, FC matrices were generated with increasing time T based on the original 

run order. To account for the possibility of state effects, we randomized the order in which the 

runs were considered for each participant. Since both HCP and ABCD datasets contained 4 runs 

of resting-fMRI, we generated FC matrices from all 24 possible permutations of run order. For 

each cross-validation split, the FC matrix for a given participant was randomly sampled from one 

of the 24 possible permutations. We note that the randomization was independently performed 

for each participant. 

 

Brain-wide association reliability workflow 

To explore the reliability of univariate brain-wide association analyses (BWAS; Marek et al., 

2022), we followed a previously established split-half procedure (Tian & Zalesky, 2021; Chen et 

al., 2023). 

 

Let us illustrate the procedure using the HCP dataset (Figure S18A). We began with the full set 

of participants, which were then divided into 10 folds (first row of Figure S18A). We note that 

care was taken so siblings were not split across folds, so the 10 folds were not exactly the same 

sizes. The 10 folds were divided into two non-overlapping sets of 5 folds. For each set of 5 folds 

and each phenotype, we computed Pearson’s correlation between each RSFC edge and 

phenotype across participants, yielding a 419 × 419 correlation matrix, which was then converted 

into a 419 × 419 t-statistic matrix. Split-half reliability between the (lower triangular portions of 

the symmetric) t-statistic matrices from the two sets of 5 folds was then computed using the 

intra-class correlation formula (Tian & Zalesky, 2021; Chen et al., 2023).  

  

The above analysis was repeated with different sample sizes achieved by subsampling each fold 

(second and third rows of Figure S18A). The split-half sample sizes were subsampled from 150 

to 350 (in intervals of 50). Together with the full sample size of approximately 800 participants 
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(corresponding to a split-half sample size of around 400), there were 6 split-half sample sizes 

corresponding to 150, 200, 250, 300, 350 and 400 participants. 

 

The whole procedure was also repeated with different values of T. Since there were 29 values of 

T, there were in total 29 × 6 univariate BWAS split-half reliability values for each phenotype. To 

ensure robustness, the above procedure was repeated 50 times with different split of the 

participants into 10 folds to ensure stability (Figure 18A). The reliability values were averaged 

across all 50 repetitions. 

 

The same procedure was followed in the case of the ABCD dataset, except as previously 

explained, the ABCD participants were divided into 10 site-clusters. Therefore, the split-half 

reliability was performed between two sets of 5 non-overlapping site-clusters. In total, this 

procedure was repeated 126 times since there were 126 ways to divide 10 site-clusters into two 

sets of 5 non-overlapping site-clusters.  

 

Similar to the HCP, the analyses were repeated with different numbers of split-half participants, 

ranging from 200 to 1000 ABCD participants (in intervals of 200). Together with the full 

training set size of approximately 2400 participants (corresponding to a split-half sample size of 

approximately 1200 participants, there were 6 split-half sample sizes, corresponding to 200, 400, 

600, 800, 1000, 1200.  

 

The whole procedure was also repeated with different values of T. Since there were 10 values of 

T in the ABCD dataset, there were in total 10 × 6 values univariate BWAS split-half reliability 

values for each phenotype. 

 

Previous studies have suggested the Haufe-transformed coefficients from multivariate prediction 

are significantly more reliable than univariate BWAS (Tian & Zalesky, 2021; Chen et al., 2023). 

Therefore, we repeated the above analyses by replacing BWAS with the multivariate Haufe-

transform.  

 

A full table of split-half BWAS reliability for each given combination of sample size and scan 

time per participant can be found in the supplementary spreadsheet. 

 

Data and Code Availability 

Both HCP (https://www.humanconnectome.org/) and ABCD (https://abcdstudy.org/) datasets are 

publicly available. Data used in the ABCD portion of the analysis is available on the NIMH Data 

Archive (NDA) website (LINK_TO_BE_UPDATED).  

 

Code for this study is publicly available in the GitHub repository maintained by the 

Computational Brain Imaging Group (https://github.com/ThomasYeoLab/CBIG). Processing 

pipelines of the fMRI data can be found here 

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/preprocessing/CBIG_fMR

I_Preproc2016).  

 

Code specific to the analyses in this study can be found here (LINK_TO_BE_UPDATED). Code 

related to this study was reviewed by co-author TWKT to reduce the chance of coding errors.  
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