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Cognitive control training with 
domain-general response inhibition does not 
change children’s brains or behavior

Keertana Ganesan1,10, Abigail Thompson1,2,10, Claire R. Smid    1,10, 
Roser Cañigueral1,10, Yongjing Li1, Grace Revill1, Vanessa Puetz1, 
Boris C. Bernhardt3, Nico U. F. Dosenbach    4,5,6,7,8, Rogier Kievit9  
& Nikolaus Steinbeis    1 

Cognitive control is required to organize thoughts and actions and is critical 
for the pursuit of long-term goals. Childhood cognitive control relates 
to other domains of cognitive functioning and predicts later-life success 
and well-being. In this study, we used a randomized controlled trial to test 
whether cognitive control can be improved through a pre-registered 8-week 
intervention in 235 children aged 6–13 years targeting response inhibition 
and whether this leads to changes in multiple behavioral and neural 
outcomes compared to a response speed training. We show long-lasting 
improvements of closely related measures of cognitive control at the 1-year 
follow-up; however, training had no impact on any behavioral outcomes 
(decision-making, academic achievement, mental health, fluid reasoning and 
creativity) or neural outcomes (task-dependent and intrinsic brain function 
and gray and white matter structure). Bayesian analyses provide strong 
evidence of absent training effects. We conclude that targeted training of 
response inhibition does little to change children’s brains or their behavior.

Cognitive control refers to a set of processes critical for guiding 
thoughts, feelings and actions in a flexible, goal-directed manner1. 
Childhood cognitive control is positively associated with a range of 
outcomes in other domains, notably social skills2–6, academic per-
formance7,8 and mental health9 and, more crucially, is predictive of 
these outcomes later in life7,10,11. Cognitive control undergoes pro-
tracted development from childhood into early adulthood12–14. This 
development is underpinned by the maturation of late-developing 
fronto-parietal and fronto-striatal neural circuitry15,16, supposedly 

affording extended plasticity17. Given its critical role in healthy and 
productive development, coupled with the prolonged plasticity of 
its underlying neural circuitry, cognitive control has been a primary 
target for interventions18,19 and particularly so in childhood20. Interven-
tions are costly in terms of time, money and opportunity, yet there is 
continued debate over how successful they actually are.

Cognitive control interventions have primarily focused on improv-
ing their hypothesized constituent processes, namely working mem-
ory, cognitive flexibility and, to a lesser extent, response inhibition21,22. 
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training regimes in terms of diversity, complexity and variability of 
training input33,36 and assessing a wide array of behavioral and neural 
outcome measures both short and long term.

Unlike most cognitive control interventions, which focus on work-
ing memory training22, in the present sudy we targeted ‘response inhibi-
tion’ as the primary mechanism of action. Inhibition involves a set of 
highly relevant and widely used processes, including response inhibi-
tion or stopping, response selection and contextual monitoring38. As 
such, inhibition may offer a set of cognitive control processes that lend 
themselves well to training in terms of their domain-general nature as 
well as the specifically identified training mechanism39–44. Using a rand-
omized controlled trial, we assessed the impact of an 8-week cognitive 
control training with response inhibition as the active ingredient in our 
experimental group. We compared performance changes on a host 
of outcome measures with an active control group training response 
speed, before and after training as well as at a 1-year follow-up. Outcome 
measures were chosen based on their well-established relationship with 
cognitive control and response inhibition specifically and included 

There is broad consensus that these functions can be improved through 
training, albeit in a relatively narrow and often task-specific manner 
(that is, near transfer)23,24. However, changes in other distally related 
domains of cognitive functioning and real-world outcomes (that is, far 
transfer) have been much less consistently observed22,23,25–32. Although 
views differ on whether cognitive training can actually lead to far trans-
fer, the quality of evidence has been consistently questioned33,34. Given 
the likelihood of small effect sizes, criticisms have focused on under-
powered samples and poorly specified training mechanisms33,35,24. Fur-
thermore, training regimes often lack core features minimally required 
for far transfer, such as continuously variable, diverse and complex 
input18,36,37, and assessment of training-related outcomes focuses 
mostly on only short-term effects and a limited number of outcome 
measures29. Finally, the frequent absence of active control groups pro-
hibits drawing any inference on the reasons, let alone mechanisms, for 
any transfer effects. Here we address whether cognitive control train-
ing transfers onto other domains of functioning. We do so in a highly 
powered sample of children using best practice recommendations for 
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Fig. 1 | Training metrics. a, Motivation (week 2: Experimental Group =  
5.30 ± 0.80 (n = 38, min = 3.5, max = 6.17, q1–q3 = [4.67,5.67]); Control 
Group = 5.30 ± 0.72 (n = 39, min = 3.17, max = 6.17, q1–q3 = [5,6]) decreased over 
the weeks F (6, 308.75) = 16.42, P < 0.001) and was similar (t (395.13) = −0.50, 

P = 0.61) between both groups. b, Number of sessions (Experimental 
Group = 16.60 ± 8.35; Control Group = 16.99 ± 8.55) completed was similar  
(t (205.33) = 0.33, P > 0.740) between both groups. c, Training task performance 
during training improved in both groups over the course of the training period.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01672-w

social and intertemporal decision-making4–6,45, academic achieve-
ment7,8, fluid reasoning46, mental health (that is, internalizing and 
externalizing symptoms)9,47 as well as creativity48. To understand the 
underlying neurocognitive basis of potential training effects, we also 
sampled a wide assay of neural indices of brain function, structure and 
connectivity. In addition to whole-brain analyses, we focused on regions 
implicated in cognitive control, including the inferior frontal gyrus 
(IFG)38,49 and cingulo-opercular and fronto-parietal networks (CONs 
and FPNs, respectively)50. In addition to assessing the impact of the 
training regime as a whole, we sought to test two recent hypotheses con-
cerning cognitive control training, namely (1) that far transfer effects 
emerge only over time29 and (2) that near transfer effects mediate far 
transfer effects51. Finally, we made use of the occurrence of a naturally 
occurring stressor, coronavirus disease 2019 (COVID-19), to test the 
commonly held view that cognitive control might buffer against the 
onset of mental health problems47,52. Training duration was chosen to be 
8 weeks, which was previously shown to be sufficient for far transfer26,29.

We developed a highly motivating gamified interface to train 
response inhibition through variations of the stop-signal task (Experi-
mental Group) or response speed (Control Group). Both groups received 
identical training in terms of narrative, stimuli and intensity, and the only 
difference between the groups was how participants were instructed 
to respond to the stop stimuli (inhibit for the Experimental Group and 
respond for the Control Group). Training involved a high degree of varia-
tion of training contexts and mechanisms and further ensured adaptive-
ness of the training protocol (Supplementary Figs. 2 and 3) by means of 
trial-by-trial adaptation (using a staircase procedure) based on perfor-
mance, such that trials were scaled appropriately to individual abilities 
for both groups. We refer to closely related domains as ‘near transfer’, 
which are outcome measures with a highly similar task structure as to 
what was trained53. Everything else we refer to as ‘far transfer’. Power cal-
culations estimated that to obtain even a small Group-by-Session interac-
tion effect of f = 0.1 with a power of 0.95 at an alpha Bonferroni corrected 
for the present number of measures (19; corrected alpha = 0.0025) 
requires a minimal sample size of 119 participants. The present sample 

of 235 children is almost twice that and, therefore, amply powered. 
Leveraging such a large sample also allows us to establish evidence of 
the absence of the effects of cognitive control training by using Bayes-
ian factor (BF) hypothesis testing54. All main hypotheses and analyses 
for this study were pre-registered: https://osf.io/bn75g/. Correction to 
control for false discovery rate (FDR) with multiple testing of pre–post 
training effects was done using the Benjamini–Hochberg procedure55.

Results
Associations between cognitive control and outcome 
measures
We first tested how cognitive control performance was associated 
with each of our outcome measures. To remove task-related variance 
specific to any assessment of cognitive control, we obtained a single 
factor of cognitive control derived from multiple cognitive control 
measures (Methods). We observed significant positive associations 
between cognitive control performance and several of the outcome 
measures in the expected direction (Extended Data Fig. 1): delay of 
gratification (that is, percentage of delayed choices in the intertem-
poral choice task; t (226) = 2.44, P = 0.015); academic achievement  
(t (217) = 2.53, P = 0.012); fluid reasoning (that is, Wechsler Abbreviated 
Scale of Intelligence (WASI) scores; t (216) = 2.27, P = 0.024); external-
izing symptoms (t (184) = −2.15, P = 0.032) as well as mean diffusivity of 
right fronto-striatal tracts (t (145) = −2.81, P = 0.005). Cognitive control 
performance was, thus, correlated with a host of other outcomes, as 
commonly reported in the literature7–9,45.

Training indices
Training took place over an 8-week period. The motivation to train was 
high to begin with (Experimental Group = 5.30; Control Group = 5.30; 
out of 1–7) and decreased as training went on (F (6, 308.75) = 16.42, 
P < 0.001; Fig. 1a). No group differences were observed in overall motiva-
tion between groups (t (395.13) = −0.50, P = 0.61; BF10 = 0.23; Fig. 1a) nor 
an interaction between Session and Group (F (6,308.75) = 1.45, P = 0.194). 
Furthermore, on average, individuals in both groups trained a similar 
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Fig. 2 | Short-term near transfer. a, Percentage correct stop increased 
significantly in the Experimental Group after training (pre-session: Experimental 
Group (n = 109) = 0.56 ± 0.01, Control Group (n = 109) = 0.56 ± 0.01; post-session: 
Experimental Group (n = 107) = 0.62 ± 0.01, Control Group (n = 106) = 0.54 ± 0.01). 
b, Go RT increased significantly in the Experimental Group and decreased 

significantly in the Control Group after training (pre-session: Experimental 
Group (n = 118) = 590.52 ± 9.93, Control Group (n = 116) = 580.42 ± 9.42; 
post-session: Experimental Group (n = 109) = 650.63 ± 10.31, Control Group 
(n = 109) = 544.60 ± 10.08).
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number of sessions (Experimental Group: n = 16.60 ± 8.35; Control 
Group: n = 16.99 ± 8.55). No significant difference was observed in the 
amount trained between both groups (t (205.33) = 0.33, P > 0.740; 
BF10 = 0.16; Fig. 1b). To assess whether each group improved on the 
trained cognitive function throughout the intervention, we examined 
changes over the training sessions in the stop-signal reaction time (SSRT; 
Experimental Group) and the ‘go-signal’ reaction time (Go RT; Control 
Group), respectively. For this, we looked at the slope of change in each 
trained cognitive function using a mixed model with training weeks 
added as a predictor. There was a main effect of Session where both 
groups improved on their trained cognitive functions over the training 
weeks (Experimental Group: F (1, 2292.60) = 121.30, P < 0.001, η2 = 0.05; 
Control Group: F (1, 3197.5) = 185.57, P < 0.001, η2 = 0.05; Fig. 1c). Thus, 
groups did not differ in training intensity or motivation and showed 
moderate improvements during training in the targeted processes.

Short-term training-related changes
Near transfer. As a primary measure of near transfer, we looked at the 
probability of successful stopping and response times to ‘go’ stim-
uli. The latter is of interest for both indexing training success for the 
response speed group as well as providing a measure of proactive slow-
ing56 for the Experimental Group. A mixed model revealed a significant 
interaction between Session and Group in the probability of success-
ful stopping in the SSRT (F (1,221.00) = 27.31, PFDRcorr < 0.001, η2 = 0.11; 
Fig. 2a). Follow-up paired t-tests comparing pre–post training scores 
revealed that the probability of successful stopping increased in the 
Experimental Group (t (215) = −5.96, P < 0.001). However, no significant 
change was found in the Control Group (t (218) = 1.43, P = 0.92). We also 
observed a significant interaction between Session and Group in Go RT 
(F (1, 227.28) = 31.75, PFDRcorr < 0.001, η2 = 0.12; Fig. 2b). Follow-up paired 
t-tests comparing pre–post training scores revealed that reaction times 
increased in the Experimental Group (t (228) = −5.02, P < 0.001) and 
decreased in the Control Group (t (228) = 2.94, P = 0.021).

Far transfer—behavioral indices. Cognitive control. Training cogni-
tive control was operationalized by targeting response inhibition. We 
assessed the impact of training response inhibition on other subproc-
esses associated with cognitive control (that is, inhibition as meas-
ured by tasks other than the SSRT, shifting and working memory). 
Given the potentially different impact of training on both speed and 
accuracy57, we performed factor analyses across all cognitive control 
tasks separately for error rates and reaction times (Methods). This 
yielded two factors for error rates (one jointly for inhibition and shift-
ing and one for memory) and one single factor for reaction times. 
For error rates, there was a Session-by-Group interaction found with 

the inhibition/shifting factor (F (1, 215.68) = 10.678, PFDRcorr = 0.006, 
η2 = 0.05; Fig. 3a). Follow-up paired t-tests, however, revealed that 
neither group changed significantly from pre-training to post-training. 
For the memory factor, there was no Session-by-Group interaction  
(F (1, 212.72) = 0.090, P = 0.764, η2 < 0.001, BF10 = 0.188; Fig. 3b). For the 
reaction time factor, there was a significant Session-by-Group interac-
tion (F (1,213.71) = 18.60, PFDRcorr < 0.001, η2 = 0.08; Fig. 3c). Pre–post 
t-test comparisons in the Experimental Group revealed an increase 
from pre-training to post-training (t (213) = −2.94, P = 0.022) and a 
decrease for the Control Group (t (212) = 3.16 P = 0.011).

Decision-making. For the role of the proposer in the Dictator Game 
(DG) for coins shared, there was no significant Session-by-Group 
interaction (F (1, 199.18) = 0.144, P = 0.705, η2 < 0.001, BF10 = 0.201; 
Fig. 3d). For the role of the responder in the Ultimatum Game (UG) for 
offers accepted, there was no significant Session-by-Group interaction  
(F (1, 196.49) = 2.36, P = 0.126, η2 = 0.01, BF10 = 0.176; Fig. 3e). In the inter-
temporal choice task, there was no significant Session-by-Group inter-
action in the total percentage of delayed choices (F (1, 203.60) = 1.01, 
P = 0.317, η2 = 0.004, BF10 = 0.150; Fig. 3f).

Academic performance. There was no significant Session-by-Group 
interaction for total academic scores (F (1, 217.35) = 0.266, P = 0.606, 
η2 = 0.001, BF10 = 0.159; Fig. 3g).

WASI. There was no significant Session-by-Group interaction found for 
WASI scores (F (1, 211.92) = 0.351, P = 0.554, η2 = 0.001, BF10 = 0.169; Fig. 3h).

Mental Health. There was no significant Session-by-Group interaction 
found for either internalizing problems (F (1, 125.47) = 4.10, P = 0.159, 
BF10 = 0.194; Fig. 3i) or externalizing problems (F (1, 123.94) = 0.972, 
P = 0.326, η2 = 0.007, BF10 = 0.228; Fig. 3j).

Creativity. There was no significant Session-by-Group interaction for 
total creativity scores (a sum score of the five measures from Torrance 
Tests of Creative Thinking (TTCT); F (1, 209.32) = 3.373, P = 0.068, 
η2 = 0.02, BF10 = 0.448; Fig. 3k).

Far transfer—neural indices. Functional magnetic resonance imaging. 
Although we report brain regions classically implicated in inhibition 
during successful versus unsuccessful stop trials in our developmental 
sample (Supplementary Table 7), when looking at the whole brain, 
no significant interaction was observed between Session and Group 
for any voxel after correction for multiple comparisons. We also 
focussed our analysis on the right IFG, a core hub of cognitive control 

Fig. 3 | Short-term far transfer on behavioral indices. a–c, Cognitive 
control. A significant training effect was found in the inhibition/shifting 
error factor (pre-session: Experimental Group (n = 110) = −0.003 ± 0.01, 
Control Group (n = 107) = 0.004 ± 0.01; post-session: Experimental Group 
(n = 104) = 0.027 ± 0.01, Control Group (n = 103) = −0.029 ± 0.01) and the 
reaction time factor (pre-session: Experimental Group (n = 111) = −0.026 ± 0.36, 
Control Group (n = 107) = 0.017 ± 0.30; post-session: Experimental Group 
(n = 104) = 1.31 ± 0.36, Control Group (n = 103) = −1.36 ± 0.50). Overall reaction 
times across all cognitive control tasks increased in the Experimental Group and 
decreased in the Control Group (error rate memory: pre-session: Experimental 
Group (n = 110) = 0.001 ± 0.003, Control Group (n = 107) = −0.001 ± 0.003; 
post-session: Experimental Group (n = 104) = 0.0004 ± 0.004, Control 
Group (n = 103) = −0.0002 ± 0.004). d–f, Decision-making. DG offer 
(pre-session: Experimental Group (n = 116) = 2.00 ± 0.10, Control Group 
(n = 113) = 1.77 ± 0.11; post-session: Experimental Group (n = 91) = 2.13 ± 0.12, 
Control Group (n = 82) = 1.80 ± 0.14); unfair offer acceptance (pre-session: 
Experimental Group (n = 116) = 0.43 ± 0.05, Control Group (n = 113) = 0.41 ± 0.05; 
post-session: Experimental Group (n = 91) = 0.57 ± 0.05, Control Group 
(n = 82) = 0.43 ± 0.05); percentage of delayed choice (pre-session: Experimental 

Group (n = 116) = 38.55 ± 3.06, Control Group (n = 112) = 38.80 ± 3.21; 
post-session: Experimental Group (n = 89) = 48.0 ± 3.72, Control Group 
(n = 82) = 43.63 ± 3.86). g, Academic achievement (pre-session: Experimental 
Group (n = 109) = 118.69 ± 1.02, Control Group (n = 110) = 116.01 ± 1.02; 
post-session: Experimental Group (n = 109) = 118.43 ± 1.04, Control Group 
(n = 110) = 116.75 ± 1.04). h, Fluid reasoning (pre-session: Experimental 
Group (n = 111) = 114.85 ± 1.45, Control Group (n = 107) = 117.66 ± 1.50; 
post-session: Experimental Group (n = 104) = 121.59 ± 1.51, Control Group 
(n = 103) = 123.0 ± 1.56). i,j, Changes in mental health, separately for internalizing 
problems (pre-session: Experimental Group (n = 96) = −0.008 ± 0.08, 
Control Group (n = 90) = 0.008 ± 0.10; post-session: Experimental Group 
(n = 63) = 0.10 ± 0.12, Control Group (n = 68) = −0.091 ± 0.11) and externalizing 
problems (pre-session: Experimental Group (n = 96) = 0.11 ± 0.10, Control Group 
(n = 90) = −0.12 ± 0.09; post-session: Experimental Group (n = 63) = 0.11 ± 0.14, 
Control Group (n = 68) = −0.10 ± 0.09). k, Creativity (pre-session: Experimental 
Group (n = 111) = 20.94 ± 0.81, Control Group (n = 102) = 24.28 ± 0.78; 
post-session: Experimental Group (n = 104) = 16.39 ± 0.67, Control Group 
(n = 98) = 17.20 ± 0.77).
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and response inhibition in particular49. For the region of interest (ROI) 
analysis, parameter estimates for each participant were extracted from 
the right IFG. A mixed model revealed a significant effect of Group (F 
(1, 271) = 11.43, P < 0.001, η2 = 0.04; higher activation overall for the 
Control Group compared to the Experimental Group) and no interac-
tion between Session and Group (F (1, 271) = 3.87, P = 0.050, η2 = 0.01, 
BF10 = 1.105; Fig. 4a). Follow-up t-test showed no significant change in 
either group before or after training.

Cortical thickness. To assess potential training-related changes in 
cortical gray matter structure, we looked at the whole brain. There was 
no significant interaction between Session and Group for any voxel. 

We also obtained parameter estimates of cortical thickness for each 
participant extracted from the right IFG. A mixed model revealed no 
interaction between Session and Group (F (1, 139.85) = 0.016, P = 0.901, 
η2 < 0.001, BF10 = 0.200; Fig. 4b).

Resting-state connectivity. We looked at changes in connectivity 
profiles in circuits known to be implicated in cognitive control and 
response inhibition50, such as CON and FPN. Connectivity in the CON 
and FPN was extracted for each participant. Mixed models revealed no 
interaction between Session and Group in either of the two networks 
(CON: F (1, 141.34) = 0.053, P = 0.819, η2 < 0.001, BF10 = 0.180; Fig. 4c; 
FPN: F (1, 143.14) = 0.162, P = 0.688, η2 = 0.001, BF10 = 0.187; Fig. 4d).
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Fig. 4 | Short term far transfer on neural indices. Changes before and 
after training in a: activation in right IFG (rIFG) (pre-session: Experimental 
Group (n = 72) = −0.24 ± 0.25, Control Group (n = 69) = 0.96 ± 0.20; post-
session: Experimental Group (n = 70) = −0.05 ± 0.25, Control Group 
(n = 66) = 0.27 ± 0.18). b, Cortical thickness in rIFG (pre-session: Experimental 
Group (n = 75) = 2.86 ± 0.01, Control Group (n = 71) = 2.89 ± 0.01; post-session: 
Experimental Group (n = 70) = 2.85 ± 0.01, Control Group (n = 67) = 2.87 ± 0.01). 
c, Functional connectivity in the CON (pre-session: Experimental Group 
(n = 75) = 0.31 ± 0.01, Control Group (n = 72) = 0.30 ± 0.01; post-session: 
Experimental Group (n = 70) = 0.33 ± 0.01, Control Group (n = 67) = 0.33 ± 0.01). 
d, Functional connectivity in the FPN (pre-session: Experimental Group 

(n = 75) = 0.27 ± 0.01, Control Group (n = 72) = 0.25 ± 0.01; post-session: 
Experimental Group (n = 70) = 0.27 ± 0.01, Control Group (n = 67) = 0.26 ± 0.01). 
e, Changes in fractional anisotropy of right fronto-striatal structural connectivity 
(pre-session: Experimental Group (n = 75) = 0.41 ± 0.002, Control Group 
(n = 72) = 0.41 ± 0.003; post-session: Experimental Group (n = 70) = 0.41 ± 0.002, 
Control Group (n = 67) = 0.41 ± 0.003). f, Changes in mean diffusivity of right 
fronto-striatal structural connectivity (pre-session: Experimental Group 
(n = 75) = 0.00088 ± 0.000003, Control Group (n = 72) = 0.00088 ± 0.000003; 
post-session: Experimental Group (n = 70) = 0.00088 ± 0.000003, Control 
Group (n = 67) = 0.00087 ± 0.000004). FA, fractional anisotropy; MD, mean 
diffusivity.
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Diffusion tensor imaging. Fractional anisotropy and mean diffusivity, 
two measures of white matter microstructure, were extracted from 
connections between the frontal lobes and striatal areas of the right 
hemisphere, given their known role in cognitive control and response 
inhibition58. Mixed models revealed no significant interactions between 
Session and Group in either fractional anisotropy (F (1, 141.63) = 0.134, 
p = 0.715, η2 < 0.001, BF10 = 0.188; Fig. 4e) or mean diffusivity (F (1, 
144.24) = 0.019, P = 0.891, η2 < 0.001, BF10 = 0.211; Fig. 4f) in the right 
frontal-striatal putamen.

Long-term training-related changes
Near transfer. We also tested if any training-related changes might per-
sist or, indeed, emerge over time, as was asserted previously29, by com-
paring performance on outcome measures between training groups 
1 year after training. For the probability of successful stopping in the 
SSRT, there was a significant interaction between Session and Group 
(F (1,227.16) = 8.68, PFDRcorr = 0.018, η2 = 0.04; Fig. 5a). Follow-up paired 
t-tests revealed that the probability of successful stopping remained 
increased in the Experimental Group (t (217) = −4.38, P = 0.001) after 
1 year; however, no significant change was found in the Control Group  
(t (218) = −0.202, P = 1.000). For reaction time to the ‘go’ signal, 
there was a significant interaction between Session and Group (F (1, 
235.94) = 13.32, PFDRcorr < 0.003, η2 = 0.05; Fig. 5b). Follow-up paired 
t-tests revealed that reaction times remained elevated in the Experi-
mental Group (t (231) = −6.992, P < 0.001); however, no significant 
change was found in the Control Group (t (230) = −1.844, P = 0.399).

Far transfer. Cognitive control. No significant changes remained in 
executive function tasks 1 year after training. These analyses were 
performed on a subset of tasks that were carried out at the follow-up 
due to COVID-19 restrictions. No Session-by-Group interaction was 
found in memory span in the Corsi task (F (1, 228.05) = 0.147, P = 0.702, 
η2 < 0.001, BF10 = 0.152; Fig. 6a); in proactive control, as measured 
by the AX-Continuous Performance Task (CPT) (F (1, 445) = 0.340, 
P = 0.560, η2 < 0.001, BF10 = 0.165; Fig. 6b); or in cognitive flexibility  
(F (1, 227.71) = 0.178, P = 0.183, η2 = 0.008, BF10 = 0.294; Fig. 6c).

Decision-making. There was no significant Session-by-Group inter-
action for any of the decision-making measures (sharing in the DG:  
(F (1, 204.53) = 2.74, P = 0.099, η2 = 0.01, BF10 = 0.450; Fig. 6d)); for 
proportion of accepted offers in the UG (F (1, 198.66) = 0.385, P = 0.536, 
η2 = 0.002, BF10 = 0.174; Fig. 6e); or for percentage delayed choice in the 

intertemporal choice task (F (1, 202.89) = 0.116, P = 0.733, η2 < 0.001, 
BF10 = 0.166; Fig. 6f).

Mental health. No significant Session-by-Group interaction was found 
for internalizing problems (F (1, 154.70) = 2.23, P = 0.138, η2 = 0.01, 
BF10 = 0.207; Fig. 6g) or externalizing problems (F (1, 147.47) = 0.573, 
P = 0.450, η2 = 0.004, BF10 = 0.162; Fig. 6h).

Mediation of far transfer by near transfer
A common argument in defense of the large heterogeneity within far 
transfer effects from training studies is that this depends crucially on 
whether near transfer is found51. We examined if changes in near trans-
fer were in any way predictive of changes in far transfer. Our measure 
of near transfer was the probability of successful stopping. We found 
that near transfer was not predictive of performance change on any 
far transfer measure.

Training effect on mental health after COVID-19 lockdown
Much research has been dedicated to establishing that cognitive con-
trol might serve as a buffer to the onset of mental health problems47,52. 
Although our present sample was not at risk, data collection took place 
during COVID-19, which presented considerable challenges to mental 
health due to school closures and lockdowns59. We examined whether 
training cognitive control would buffer against any negative impact of 
COVID-19 measures on mental health. We studied apathy and mental 
health using the Apathy Evaluation Scale, clinical version (AES-C), and the 
Strengths & Difficulties Questionnaire (SDQ) for ages 4–17 years before 
and after the COVID-19 lockdown. We found that both groups were similar 
in terms of positive cases of COVID-19 as well as perceived stress (Sup-
plementary Tables 5 and 6). Crucially, although we found a significant 
increase in apathy after the COVID-19 lockdown (F (1,178.29) = 29.82, 
P < 0.001; Extended Data Fig. 2a), this was not buffered by response inhi-
bition training (F (1, 178.78) = 0.014, P = 0.905, η2 < 0.001, BF10 = 0.188; 
Extended Data Fig. 2a). There was no buffering effect of training on the 
strength and difficulties scores after the COVID-19 lockdown (F (1, 154.32) =  
3.05, P = 0.083, η2 = 0.008, BF10 = 0.141; Extended Data Fig. 2b).

Controlling for socioeconomic status
To test for the robustness and generalizability of our effects, we re-ran 
all analyses of short-term and long-term near and far transfer effects 
while also controlling for socioeconomic status (SES). Controlling for 
SES did not change any of the outcomes.
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Fig. 5 | Long-term near transfer. a, Percentage correct stop remained 
increased significantly in the Experimental Group 1 year after training 
(pre-session: Experimental Group (n = 109) = 0.56 ± 0.008, Control 
Group (n = 109) = 0.56 ± 0.007; post-session: Experimental Group 
(n = 107) = 0.61 ± 0.008, Control Group (n = 106) = 0.56 ± 0.008). b, Go 

RT remained increased significantly in the Experimental Group 1 year 
after training (pre-session: Experimental Group (n = 118) = 590.52 ± 9.93, 
Control Group (n = 116) = 580.42 ± 9.42; post-session: Experimental Group 
(n = 109) = 674.67 ± 9.18, Control Group (n = 109) = 603.75 ± 9.28).
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Discussion
The critical role of cognitive control in healthy and productive devel-
opment and positive later-life outcomes has attracted tremendous 
interest from researchers and policymakers seeking to understand how 
cognitive control development can be supported. However, consensus 
on whether this is possible has been difficult to reach. In this study, 
we addressed whether cognitive control can be improved by means 
of a targeted response inhibition training and whether such training 

has a lasting, wider impact on cognitive and neural functioning. We 
developed an 8-week intervention, which was administered to a highly 
powered sample of 235 6–13-year-old children in a pre-registered ran-
domized controlled trial including an active control group training 
response speed. We found that our training led to specific improve-
ments in the trained functions (that is, response inhibition and response 
speed), which lasted up to 1 year after training. We further found that 
response inhibition training led to more cautious responding on a 
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Fig. 6 | Long-term far transfer. a–c, Changes in three executive function (EF) 
tasks 1 year after training: Corsi memory span (pre-session: Experimental 
Group (n = 117) = 5.36 ± 0.085, Control Group (n = 116) = 5.42 ± 0.080; 
post-session: Experimental Group (n = 110) = 6.41 ± 0.074, Control 
Group (n = 107) = 6.41 ± 0.071); PBI scores (pre-session: Experimental 
Group (n = 118) = 0.037 ± 0.050, Control Group (n = 116) = 0.020 ± 0.044; 
post-session: Experimental Group (n = 110) = 0.030 ± 0.047, Control 
Group (n = 108) = 0.066 ± 0.049); and cognitive flexibility cores (pre-
session: Experimental Group (n = 114) = −0.024 ± 0.048, Control 
Group (n = 112) = −0.063 ± 0.053; post-session: Experimental Group 
(n = 109) = −0.103 ± 0.053, Control Group (n = 108) = −0.010 ± 0.055). 
d–f, Changes in three decision-making task variables: DG offer (pre-session: 
Experimental Group (n = 116) = 2.0 ± 0.10, Control Group (n = 113) = 1.77 ± 0.11; 
post-session: Experimental Group (n = 83) = 1.94 ± 0.15, Control Group 

(n = 80) = 2.07 ± 0.012); unfair offer acceptance (pre-session: Experimental 
Group (n = 116) = 0.43 ± 0.046, Control Group (n = 113) = 0.41 ± 0.046; 
post-session: Experimental Group (n = 83) = 0.54 ± 0.0555, Control 
Group (n = 80) = 0.48 ± 0.056); and percentage of delayed choice (pre-
session: Experimental Group (n = 116) = 38.55 ± 3.06, Control Group 
(n = 112) = 38.80 ± 3.21; post-session: Experimental Group (n = 82) = 65.58 ± 3.33, 
Control Group (n = 78) = 64.03 ± 3.60). g,h, Changes in mental health, 
separated by internalizing problems (pre-session: Experimental Group 
(n = 96) = −0.008 ± 0.08, Control Group (n = 90) = 0.008 ± 0.10; post-
session: Experimental Group (n = 81) = 0.061 ± 0.11, Control Group 
(n = 81) = −0.061 ± 0.13) and externalizing problems (pre-session: Experimental 
Group (n = 96) = 0.11 ± 0.10, Control Group (n = 90) = −0.12 ± 0.09; post-session: 
Experimental Group (n = 81) = 0.10 ± 0.12, Control Group (n = 81) = −0.10 ± 0.09).
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battery of cognitive control tasks. Crucially, however, we did not find 
any evidence to support the idea that training response inhibition 
leads to changes in other domains, such as decision-making, academic 
achievement, fluid reasoning, mental health or creativity. Furthermore, 
there was no evidence that our training led to any marked changes in 
brain function, structure or connectivity. There was also no indication 
of training effects emerging over time, nor did the presence of near 
transfer effects mediate the likelihood of far transfer. Finally, training 
response inhibition did not act as a buffer to mental health problems as 
a result of major social stressors, such as COVID-19. Bayesian tests pro-
vide substantial evidence in support of the evidence of absent training 
effects (Tables 1 and 2). In sum, response inhibition training appears to 
do little to alter children’s brains or their behavior in long-lasting ways.

Research on the effectiveness of cognitive control interventions 
has been riddled with contradictory findings32,60,61. However, consensus 
exists that this is best arbitrated by high-quality evidence33, namely 
through randomized controlled trials with an active control group33,34 
and clearly defined training mechanisms33,35,24 implemented in a vari-
able, dynamic and adaptive training schedule18,36,37 across a large sample 
of participants and with a comprehensive set of outcome measures 

taken at multiple timepoints. The present study represents such an 
approach, following current best practices of the field33,36 to interrogate 
whether a core facet of cognitive control—response inhibition—can 
be improved and whether this leads to changes in other domains of 
functioning. We found that each group improved throughout the 
intervention on their trained process and that training effects remained 
present up to 1 year after the end of training, suggesting that the train-
ing was highly effective at improving the targeted cognitive processes. 
We also found that the proactive slowing exhibited in the experimental 
group became manifest as general slowing on other cognitive control 
tasks. Although it has been shown that training response inhibition 
can increase proactive control62, the absence of reduced errors on 
cognitive control tasks in the present study suggests that such slowing 
does not bestow any strategic advantage. The fact that the two training 
groups improved on the targeted function strengthens the evidence 
of absent training effects on any far transfer measure or underpinning 
neurocognitive outcome. Bayesian analyses demonstrate evidence of 
the absence of transfer effects on any of the tested domains or brain 
mechanisms implicated in cognitive control. Furthermore, the present 
study also addresses two recent hypotheses for the large heterogeneity 

Table 1 | Short-term training effect for each measure with BF values

Domain df F P Test P (corrected) η2 (partial) BF10 Interpretation

Correct stop (%) 220.9983 27.31287 4.00 × 10-7 SIG 3.80 × 10-6 0.11 – –

Go RT 227.2779 31.7502 5.16 × 10-8 SIG 9.81 × 10-7 0.12 – –

Error rate inhibition/shifting 215.6812 10.67843 0.001261 SIG 0.005991 0.05 – –

Error rate memory 212.7198 0.090184 0.764237 NSIG 0.900727 4.24 × 10-4 0.188 Substantial evidence 
for H0

Reaction time cognitive control 213.7102 18.60236 2.46 × 10-5 SIG 0.000156 0.08 – –

DG offer 199.1767 0.143779 0.704957 NSIG 0.900727 7.21 × 10-4 0.201 Substantial evidence 
for H0

Unfair offer acceptance 196.4909 2.363369 0.125822 NSIG 0.298828 0.01 0.176 Substantial evidence 
for H0

Percentage of delayed choice 203.6008 1.007366 0.316726 NSIG 0.619391 4.92 × 10-3 0.15 Substantial evidence 
for H0

Reading/math 217.3507 0.266263 0.606374 NSIG 0.900727 1.22 × 10-3 0.159 Substantial evidence 
for H0

WASI intelligence scores 211.9218 0.351003 0.554177 NSIG 0.900727 1.65 × 10-3 0.169 Substantial evidence 
for H0

Internalizing problems 125.4664 4.104408 0.044892 NSIG 0.159122 0.03 0.194 Substantial evidence 
for H0

Externalizing problems 123.9372 0.972433 0.325995 NSIG 0.619391 7.79 × 10-3 0.228 Substantial evidence 
for H0

Creativity 209.3242 3.373341 0.067677 NSIG 0.183696 0.02 0.448 Anecdotal evidence 
for H0

Activation right IFG 271 3.867541 0.050249 NSIG 0.159122 0.01 1.105 Anecdotal evidence 
for H1

Cortical thickness right IFG 139.8476 0.015617 0.900727 NSIG 0.900727 1.12 × 10-4 0.2 Substantial evidence 
for H0

CON connectivity 141.3451 0.05276 0.818661 NSIG 0.900727 3.73 × 10-4 0.18 Substantial evidence 
for H0

FPN connectivity 143.1404 0.161787 0.688117 NSIG 0.900727 1.13 × 10-3 0.187 Substantial evidence 
for H0

Fronto-putamen fractional 
anisotropy

141.63 0.133993 0.714873 NSIG 0.900727 9.45 × 10-4 0.188 Substantial evidence 
for H0

Fronto-putamen mean diffusivity 144.2376 0.018666 0.89152 NSIG 0.900727 1.29 × 10-4 0.211 Substantial evidence 
for H0

Mixed models were used to examine short-term training effect. Significant interaction effects between Session and Group were interpreted as presence of training-related changes. Effect 
size was calculated for the interaction effect of Group and Session. The Benjamini–Hochberg procedure was then applied to mixed-model analysis testing for training-related changes. For the 
results that are significant, we report their adjusted P value after correction to control FDR with multiple testing. For evidence of null effects, we report the BF in favor of the null model  
(the model without a Group-by-Session interaction) over the training model (the model with a Group-by-Session interaction) for each measure of interest. df, degrees of freedom; sig, 
significant; nsig, non-significant; H0, the degree of change in the outcome measure between the two groups following training is the same; H1, the degree of change in the outcome measure 
between the two groups following training is different.
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of effects in cognitive training studies. The first of these proposes that 
the occurrence of far transfer depends on and is, indeed, mediated 
by the occurrence of near transfer51. We did not find evidence to sup-
port this claim in the current work. Similarly, it has also been argued 
that far transfer effects might emerge over time and can, therefore, 
be detected only by testing again at least 1 year after the end of an 
intervention29. Again, we did not find any evidence for such effects. 
Finally, we were able to leverage the unique opportunity of COVID-
19 as a large-scale and unintended stressor that occurred during the 
period of our study, allowing us to test a commonly held assumption, 
namely whether cognitive control training would buffer against the 
onset of mental health difficulties after a stressor11,47. We did not find 
any evidence of such an effect, and, in fact, we found moderately strong 
evidence of the absence of an effect of appreciable magnitude. In sum, 
the present study provides evidence against the possibility of training 
cognitive control in targeted ways to improve associated domains of 
functioning, at least as instantiated through a response inhibition  
intervention.

A fundamental feature of virtually all cognitive control interven-
tions is to attempt to bring about improvements by directly increasing 
the capacity of the targeted function (that is, extend the number of 
items held in working memory and accelerate the speed of inhibition 
or flexibility)24. This approach is predicated on the assumption that 
cognitive control is a limited capacity or resource63, with little regard 
for what might motivate its use. The present study demonstrates that 
such an approach does not impact children’s behavior or underlying 
neural architecture, at least not through targeting response inhibition. 
Indeed, resource accounts of cognitive control, although popular for 
many years, are being debunked on both theoretical and empirical 
grounds64 and replaced with theories that consider cognitive control 
as inherently goal-oriented processes65,66. A growing body of empiri-
cal evidence and computational modeling has shown that cognitive 
control is assigned a value as a function of subjectively perceived effort 
and the likely reward or goal priority65,67,68. Critically, these insights were 
successfully leveraged recently in the context of aiming to improve 
cognitive control. For instance, effort-contingent rewards introduced 
during cognitive control tasks, by means of objective assessments of 

effort, led to an increased preference of effort in new tasks, such as 
difficult problems of arithmetic69,70. In conjunction with the present 
findings that cognitive control cannot be changed through artificially 
inflating capacity, this raises the possibility that cognitive control could 
be improved in ways that lead to changes in other domains by targeting 
motivation and effort expenditure, something that has yet to be tested 
in developmental populations.

We note some limitations in the current work. Although the overall 
duration was longer than other recent studies demonstrating far trans-
fer26,29, there is a possibility that the present training was insufficient 
in terms of dose or implementation. Furthermore, our sample came 
predominantly from above-average SES backgrounds. Although there 
is still some variability in SES, which, when accounted for, does not alter 
the results, we acknowledge that our findings may not generalize to 
other samples and, in fact, that such a training might be efficacious for 
children coming from lower SES backgrounds (although see ref. 71).

In conclusion, we followed best practice recommendations for 
designing cognitive trainings to test whether cognitive control can 
be improved in durable ways through training response inhibition and 
whether this leads to changes in associated domains of functioning in a 
large sample of children and number of outcome measures. Although 
trained functions improved in both groups and did so up to 1 year after 
training, and response inhibition training led to more cautious task 
responding generally, our training did not lead to changes in children’s 
behavior or associated neural mechanisms. Given the considerable 
policy implications of how children can be supported in their develop-
ment, these findings caution against any further investment in seek-
ing to improve response inhibition specifically and cognitive control 
more generally through trainings that canonically aim to boost these 
capacities wholesale.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41593-024-01672-w.

Table 2 | Long-term training effect for each measure with BF values

Domain df F P Test P (corrected) η2 (partial) BF10 Interpretation

Correct stop (%) 227.1605 8.683001 0.003547 SIG 0.017733 0.04 – –

Go RT 235.9409 13.32172 0.000323 SIG 0.00323 0.05 – –

Memory span 228.0468 0.146533 0.702228 NSIG 0.733347 6.42 × 10-4 0.152 Substantial evidence 
for H0

PBI scores 445 0.339658 0.560322 NSIG 0.700402 7.63 × 10-4 0.165 Substantial evidence 
for H0

Cognitive flexibility scores 227.7137 1.782017 0.183235 NSIG 0.36647 7.76 × 10-3 0.294 Substantial evidence 
for H0

DG offer 204.5271 2.737907 0.099527 NSIG 0.331756 0.01 0.45 Anecdotal evidence 
for H0

Unfair offer acceptance 198.6605 0.384665 0.535828 NSIG 0.700402 1.93 × 10-3 0.174 Substantial evidence 
for H0

Percentage of delayed choice 202.8912 0.11638 0.733347 NSIG 0.733347 5.73 × 10-4 0.166 Substantial evidence 
for H0

Internalizing problems 154.7039 2.226707 0.137679 NSIG 0.344198 0.01 0.207 Substantial evidence 
for H0

Externalizing problems 147.4677 0.57311 0.450233 NSIG 0.700402 3.87 × 10-3 0.162 Substantial evidence 
for H0

Mixed models were used to examine long-term training effect. Significant interaction effects between Session and Group were interpreted as presence of training-related changes. Effect size 
was calculated for the interaction effect of Group and Session. The Benjamini–Hochberg procedure was then applied to mixed-model analysis testing for training-related changes. For the 
results that are significant, we report their adjusted P value after correction to control FDR with multiple testing. For evidence of null effects, we report the BF in favor of the null model (the 
model without a Group-by-Session interaction) over the training model (the model with a Group-by-Session interaction) for each measure of interest. H0, the degree of change in the outcome 
measure between the two groups following training is the same; H1, the degree of change in the outcome measure between the two groups following training is different.
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Methods
Participants
A total of 262 typically developing children were recruited for the 
study (6.03–13.31 years; mean age = 8.97 years; females = 52.84%) from 
schools within Greater London in the United Kingdom (data collection 
started in May 2019 and ended in May 2021). Sampling occurred by 
contacting over 2,000 schools in the Greater London area. Of those 
schools, 20 ended up participating from a diverse range of boroughs. 
Information material was disseminated among parents of partici-
pating schools, and only those children whose parents/carers had 
signed them up ended up taking part. Participants were excluded on 
the basis of formal diagnoses of neurodevelopmental disorders as well 
as a safety protocol for neuroimaging (for example, metal in the body 
and claustrophobia). After exclusion of incomplete data, our sample 
consisted of 235 children (6.03–13.31 years; mean age = 8.97 years; 
females = 51.91%). The ethnic composition of our sample was as follows: 
Asian = 14.65%; Black = 3.18%; Mixed/multiple ethnic groups = 17.20%; 
White = 64.33%; Other = 0.63%. SES was assessed based on employment 
and education of both parents72–74 (Supplementary Table 1). There was a 
positive skew in SES (mean = 1.64; on a scale of 1–5 where 1 is the highest 
score attainable). Children were randomly assigned to an experimental 
group training cognitive control (through inhibition) or to an active 
control group training response speed (Supplementary Figs. 1 and 
2), with groups matched for gender and age, school and class based 
on mean matching. Matching was performed by an experimenter not 
involved in testing.   

The University College London (UCL) ethics committee approved 
this study (protocol number: 12271/001). In accordance with this, 
written informed consent was obtained from parents, and assent was 
obtained from children after a description of the study was provided.

Study design
This study had four main phases. After an initial baseline data col-
lection phase at pre-test, the 8-week computerized intervention was 
administered. This was followed by a post-test and, finally, a 1-year 
follow-up. Behavioral, questionnaire and neural data (that is, at pre-test, 
post-test and 1-year follow-up) were collected to examine independent 
near transfer and far transfer changes. Due to disruptions to in-person 
testing during the COVID-19 pandemic, no magnetic resonance imag-
ing (MRI) was obtained at 1-year follow-up. Retention was 71.24% from 
pre-test to post-test and 99.40% from post-test to 1-year follow-up.

Training games. Training was programmed on Gorilla Experiment 
Builder (https://gorilla.sc/), a platform for running behavioral research 
online. Training was presented in the form of a computerized web-based 
Treasure Game. The training was designed to last 8 weeks, with four 
recommended sessions per week, one taking place at school and three 
at home. Each session was programmed to take approximately 15 min.

Both groups received identical training in terms of narrative, stim-
uli and intensity (Supplementary Fig. 2). The only difference between 
the groups was how participants were instructed to respond to the stop 
stimuli (that is, inhibit for the Experimental Group and respond for 
the Control Group; further details are provided in the Supplementary 
Information). Once every week, questions regarding children’s motiva-
tion were administered (Supplementary Information).

Experimental Group: response inhibition training. To train response 
inhibition, a stop-signal response task was used. Participants were 
instructed to press the spacebar on presentation of a ‘go’ signal. On 
stop trials where a ‘stop’ signal appeared after the ‘go’ signal, partici-
pants were instructed to inhibit pressing the spacebar (however, see 
Supplementary Information Table 4 for specific descriptions of each 
training game and training mechanism). ‘Go’ and ‘stop’ signal stimuli 
and inhibition mechanism varied according to the game being played. 
The stop signal delay (SSD) was initially set at 200 ms. After successful 

inhibition, the SSD would decrease by 50 ms, and, after failed inhibition, 
it would increase by 50 ms75,76. This ensured that the training was adap-
tive. Stop trials occurred 26–47% for each training session. To ensure 
adaptiveness across training sessions, the SSD of each subsequent 
session was taken from the final ‘stop’ trial of the preceding session on 
that specific training game.

Control Group: response speed training. The response speed training 
was identical to the experimental condition in all aspects except that 
a response was required for all signals. Participants were instructed 
to press the spacebar as quickly as possible. To ensure that training 
was adaptive for this group, participants had to respond within a time 
window that was set based on a rolling average of the response time 
of the previous 10 trials plus two standard deviations. This ensured 
that the training was adaptive while minimizing the effect of outliers  
on the response threshold.

Pre–post tasks
Before and after the training, three assessment timepoints took place 
onsite at the author’s laboratory: before the training (T0), after the 
training (T1) and 1-year follow-up (T2). Note that, due to the outbreak of 
the COVID-19 pandemic in March 2020, some participants completed 
one or more assessment timepoints online from home. The assessment 
battery included several child-friendly tasks measuring cognitive 
control and neural measurements as well as creativity, mental health 
and academic performance (Supplementary Fig. 1).

Cognitive control tasks
A total of nine cognitive control tasks were administered, assessing 
different functions (that is, inhibition, shifting and working memory). 
For all tasks, participants were presented with practice trials, before 
main trials were administered, where they had to attain a criterion 
threshold for accuracy. Additionally, comprehension questions were 
employed to ensure participants understood the rules for each task 
(for example, ‘What button should you press if you see a bear on the 
screen?’). Rules were re-explained if participants answered incorrectly 
on any of the questions. The experimenter noted if the participant still 
failed to comprehend the task. All participants managed to pass these 
comprehension questions; therefore, no individual was excluded 
from the analysis. The task was presented using Presentation software 
(https://www.neurobs.com/, version 23). For remote testing during 
COVID-19, a subset of executive function tasks was administered online 
via Gorilla (https://gorilla.sc/)77,78.

Inhibition tasks. SSRT task. A measure of cognitive control was admin-
istered via a child-friendly version of the SSRT79. Ten practice trials 
were administered before 80 trials of the main task. Each trial started 
with the presentation of a fixation cross of 1,250 ms. During the task, 
participants were asked to press the left arrow key when seeing the ‘go’ 
signal (that is, a honey pot) on the left side of the screen and the down 
arrow key when the signal appeared on the right side. On 25% of the 
trials (that is, a ‘stop’ trial), a picture of bees was presented after the 
honey pot. This served as the ‘stop’ signal. The SSD started at 200 ms, 
decreased by 50 ms after a successful ‘stop’ trial and increased by 
50 ms after an unsuccessful ‘stop’ trial. As a measure of inhibition, a 
mean SSRT (ms) was calculated using the integration method80. Sev-
eral studies validated the SSRT as a measure of response inhibition81, 
and it is correlated with self-report measures of impulsive behaviors 
in young adults75.

Flanker inhibition. The participants completed a child-friendly version 
of the Eriksen flanker inhibition task82. Children were presented with a 
row of fish on the screen. They were required to focus on the fish in the 
center (named Chloe) and indicate the direction in which it was swim-
ming (that is, left key response required when the fish was facing left; 
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down key response required when the fish was facing right). Participants 
were told to ignore the direction that other fish swim in and only indicate  
the direction that Chloe swam in. On congruent trials, all fish faced the 
same direction. On incongruent trials, surrounding fish faced the oppo-
site direction to Chloe. Fish were presented for 700 ms before they disap-
peared. Participants were given a maximum of 2,500 ms to respond from 
stimulus onset. A total of 20 congruent trials and 20 incongruent trials 
were administered. This task was chosen because it is a child-friendly 
task for ages 6 years and up and was validated in several studies83,84. The 
difference in both reaction times and error rates between incongruent 
trials and congruent trials was calculated separately.

Stroop. Participants completed a child-friendly version of the Stroop 
task85. The task was introduced as the ‘Farm Animal’ game, where they 
were told to match animals to their homes (for example, dog to a ken-
nel). They were presented with both auditory stimuli of an animal 
sound (for example, ‘bark’, ‘meow’ and ‘croak’ for dog, cat and frog, 
respectively) and visual stimuli of the animals. Crucially, participants 
were asked to match animals to where they live (for example, frog to a 
pond). They were told to listen carefully to an auditory cue indicating 
the animal type (for example, frog – ‘ribbit’) and not to pay attention 
to the visual cue of the animal presented on the screen. Trials lasted 
for 10,000 ms within which participants had to make a response. 
Although audio stimuli were presented for 600 ms, visual stimuli were 
presented until participants made a response (maximum of 1,000 ms). 
A blank screen with a ‘cross’ was presented between trials for 10,000 ms 
(inter-trial interval (ITI)). On congruent trials, both auditory and visual 
cues matched (for example, frog presented on screen and ‘ribbit’ tone 
played). On incongruent trials, auditory and visual cues did not match 
(that is, dog presented on screen and ‘ribbit’ tone played). Participants 
completed 72 trials in total, with 36 congruent and 36 incongruent 
trials. The differences in both reaction times and error rates between 
incongruent trials and congruent trials were calculated separately.

Memory tasks. N-back. Both the 1-back and 2-back tasks were admin-
istered to measure working memory86. The task was adapted to be 
child-friendly and introduced as the ‘Dino-Donut’ game, where partici-
pants were told that dinosaurs were lining up to eat some donuts. For 
the 1-back task, they were told to stop dinosaurs that tried to eat a donut 
twice in a row and to press the spacebar if they appeared consecutively 
to stop them. For the 2-back task, they were told that the dinosaurs 
became sneakier, and this time they should press the spacebar if the 
same dinosaur appeared two trials prior. Stimuli were shown for 500 ms 
followed by a 1,500-ms inter-stimulus-interval (ISI). Responses had to be 
made before the onset of the next stimulus presentation. Participants 
completed 80 trials in total, 40 for each N-back condition. As a measure 
of error rate, false alarm rate was calculated for both 1-back and 2-back 
tasks. Reaction times to make a correct response were also calculated.

Corsi block-tapping task. Working memory span was assessed using 
the Corsi block-tapping task, which measures visuo-spatial working 
memory span with a higher value indicating a higher working memory 
span87. This task consisted of ‘Freddy the frog’ jumping between nine 
potential locations designed as lily pads. The participants followed 
the jumps by clicking on the lily pads in a forward sequence. Trials 
commenced with a countdown from 3 to 1 to alert participants to 
the start of a trial. Then, the stimulus of the frog jumping was shown 
for 600 ms for every jump. The ISI was fixed to 600 ms. Participants 
completed three practice trials with feedback, and there was a total 
of 14 main trials. Initially, participants had to remember and click on 
two lily pads. The task employed an adaptive staircase design where 
the working memory load (that is, number of lily pads to remember) 
increased by one when participants made two consecutive correct 
answers. The maximum working memory load attained was used as a 
working memory span measure.

Shifting tasks. Cognitive flexibility. A child-friendly version of the 
cognitive flexibility task assessed participants’ ability for rule switch-
ing across dimensions (using sound cues: ‘animal’ or ‘size’). If a sound 
cue of ‘animal’ was played, participants had to indicate if the animal 
was a cat or a dog. If a sound cue of ‘size’ was played, participants had 
to indicate if the animal was big or small88. Participants had 10 s to 
respond, during which the stimuli remained on the screen before the 
trial timed out. Responses made before 200 ms after stimulus onset 
were not recorded. The ITI was jittered and ranged from 1,000 ms to 
1,200 ms. Stay trials were preceded by a trial with the same rule (for 
example, deciding on the type of animal was presented twice in a row). 
During switch trials, the current trial was preceded by a trial in a differ-
ent dimension (that is, participants had to first respond to the size of the 
animal and then to the type of animal that is presented). After a practice 
block, participants completed 40 trials (consisting of 28 stay trials and 
12 switch trials). Participants completed 20 single-dimension trials 
in two blocks and 40 mixed trials in one block. The difference in both 
reaction times and error rates between switch trials and stay trials was  
calculated.

Flanker shifting. The participants completed a child-friendly version 
of the Eriksen flanker shifting task88. Children were presented with a 
row of fish on the screen. They were told that all the fish swim in the 
same direction. However, two colors of fish would appear: orange and 
purple fish. When orange fish were presented, they were instructed to 
indicate the direction in which the fish swam (that is, left key response 
required when the fish faced left; down key response required when 
the fish faced right). When purple fish were presented, they were 
instructed to indicate the opposite direction in which the fish swam 
(that is, left key response required when the fish was facing right; 
down key response required when the fish was facing left). Fish were 
presented for 700 ms before they disappeared. Participants were given 
a maximum of 2,500 ms to respond from stimulus onset. Stay trials 
were defined as those where the rule for the previous trial was the same 
as the current trial (that is, purple trial after a purple trial; orange trial 
after an orange trial). Switch trials were defined as those where a rule 
change has occurred (that is, purple trial after an orange trial; orange 
trial after a purple trial). Based on this, there were 28 stay trials and 
12 switch trials. The difference in both reaction times and error rates 
between switch trials and stay trials was calculated.

Complex cognitive control tasks. AX-CPT. Reactive and proactive 
control were measured using a child-friendly version of the AX-CPT 
paradigm89. The task was introduced as the ‘Fruit Island’ game. An ‘A’ or 
‘B’ cue (that is, dog or cat) was presented in the middle of the screen for 
500 ms, followed by an ISI of 750 ms and then a probe ‘X’ or ‘Y’ (that is, 
orange or apple) during which participants had to make their response. 
Participants were instructed to press the left key whenever an ‘X’ fol-
lowed an ‘A’ (that is, AX trials) and to press the down arrow key for all 
other cue–probe combinations. Importantly, they were instructed 
to only respond once the probe had been presented and were alerted 
of this if they made a response before the probe was presented. Par-
ticipants had a maximum of 6,000 ms to make a response. Responses 
were followed by an ITI of 1,500 ms. The proportions of the trial types 
were based on previous studies89,90 where 40% of trials were AX trials. 
All other trials (that is, AY, BX and BY trials) were presented 20% each. 
Trials were presented randomly. Ten practice trials were administered 
where feedback was provided, followed by 60 main trials. Proactive 
Behavioral Index (PBI) was calculated for error rates and reaction 
times separately91.

Decision-making tasks
Participants were told that they would be playing a series of games 
where they could win monetary units (MUs) and exchange these for 
gifts at the end of the experiment. Participants were told that the more 
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MUs they had at the end of all the games, the larger their gift would be. 
The reward was described in this abstract way to appeal to children 
of all ages and was previously found to be sufficiently motivating for 
children of this age and equally so across the age range92,93.

DG. Participants were allocated six MUs, visually represented in the 
task as coins on a computer screen. In the offline sample, two boxes 
were presented, one for the child and one for their ‘partner’. Chil-
dren were told that they were playing with another child from a dif-
ferent school; in reality, there was no other participant. They were 
instructed to first click on the MU and then the boxes to divide them, 
and they were informed that once they had put an MU in a box, they 
could not change their decision. Counters at the side of the boxes 
kept track of the number of MUs in either box. During the task, the 
instructor explicitly informed the participant that they would turn 
away and not look at the screen. There was no response time limit. 
The DG measures pro-social decision-making as indicated by how 
many MUs a participant decides to give to another unknown child. In 
the online version, children determined their chosen distribution by 
moving a slider. In this sense, the online task required just one move 
to distribute the MUs. As in the offline version, children were told 
that they were playing with another child from another school whom 
they did not know, when, in reality, there was no other participant. 
Unlike in the offline sample, however, children could change their 
minds about their preferred distributions indefinitely and submit their 
final decision by pressing the spacebars on their computers. Parents 
were instructed to be present in the room while testing, engaged in an 
activity such as reading a book and not to influence their children’s  
participation.

UG. The UG consisted of the responder role. Children could accept 
or reject a single offer of an unfair distribution (1/6) of MUs made by 
another unknown child in the study. If they rejected the offer, the par-
ticipant and the unknown other child who made the offer (a computer, 
in reality) would receive zero MUs. For this game, there was, again, no 
response limit for the participants.

Intertemporal choice task. Intertemporal decision-making was 
assessed using an intertemporal choice task. In the intertemporal 
choice task, participants made choices between immediate and 
delayed reward options. This task measured the extent to which 
participants discount rewards as a function of how delayed they are  
via their choices. Participants completed 18 trials (in a fixed order) 
where they were always presented with a choice between either an 
immediate or a delayed option. The unit of delay used was days, where 
every moon depicted indicated one additional day of waiting before 
the participant would receive their reward. The reward for the delayed 
option was always eight MUs, and the immediate reward option ranged 
among two, four and six MUs. For every immediate reward option, 
participants’ discounting was measured by calculating the percentage 
of total delayed choices.

Academic performance
Academic performance scores were collected retrospectively from 
schools in the form of English and Maths age-standardized scores. 
Depending on school, English tests included Progress in Reading 
Assessment, Progress Test in English, Suffolk Reading Test and/or 
New Group Reading Test, and Maths tests included Progress in Under-
standing Maths Assessment and/or Progress Test in Maths. As we did 
not have discipline-specific hypotheses, the main measure for overall 
academic performance was a composite age-standardized score com-
puted for each participant as the average across all available English or 
Maths age-standardized scores for that participant; if participants had 
scores for one test or discipline only, that score was used as a measure 
of overall academic performance.

Creativity
Creativity was measured using the Torrence Test of Creative Thinking 
(TTCT)94. The TTCT is the most widely used test of creativity95–97. The 
TTCT consists of verbal and figural versions. In the present study, we 
used TTCT-Figural form A. Participants were provided with a pencil, 
an eraser and a printed Torrance activity sheet. Following a proto-
col, participants were instructed to use 10 min to complete the given 
stimuli with unique answers and to come up with interesting titles that 
described their drawings. In case participants finished in less than 
10 min, they were encouraged to use the remaining time to add to  
their answers. It has high test–retest reliability and can predict creativ-
ity success98.

Fluid intelligence
Fluid intelligence was measured using WASI-II (ref. 99). The WASI con-
sists of two parts: Matrix Reasoning and Vocabulary. WASI Matrix 
Reasoning measures non-verbal ability, which correlates well with fluid 
and visual intelligence, and the WASI verbal subtest measures verbal 
ability, which correlates well with verbal IQ and crystalized intelligence. 
For Matrix Reasoning, participants were provided with 30 visually 
depicted incomplete matrices and asked to choose one from the five 
options that logically follows the missing matrices. For the vocabu-
lary part, participants were presented with 28 words, one at a time, 
and asked to verbally define or describe the word presented. WASI-II 
has high reliability and validity100 and provides a good estimate of  
intelligence.

Mental health
SDQ. The parent-report version of the SDQ101 was used to measure 
internalizing and externalizing difficulties. The SDQ is a 25-item scale 
consisting of five subscales (emotional problems, conduct problems, 
peer relationship problems, prosocial behavior and hyperactivity/inat-
tention), each of which includes five questions. Parents rate their child’s 
behavior over the previous 6 months. Each question has the following 
response options: 0 = not true, 1 = somewhat true and 2 = certainly true. 
For each scale, the responses can be summed to provide a total score for 
that scale. In non-clinical samples, such as are included in the present 
study, it has been recommended to combine the scales into two further 
subscales representing ‘internalizing’ and ‘externalizing’ problems102. 
The internalizing subscale is calculated by summing the emotional 
problems and peer relationship problems subscales, and the external-
izing subscale is calculated by summing the hyperactivity/inattention 
and conduct problems subscales. We, therefore, used this approach in 
the present study. The SDQ has high validity and reliability103.

Child and Adolescent Symptom Inventory-4R. The Child and Ado-
lescent Symptom Inventory-4R (CASI-4R)104 is a parent-report rating 
scale that evaluates behaviors related to the disorders that are included 
in the Diagnostic and Statistical Manual of Mental Disorders in young 
people aged 5–18 years. In the present study, the CASI-4R subscales 
relating to attention-deficit/hyperactivity disorder (ADHD), general-
ized anxiety disorder, major depressive episode, depressive disorder, 
conduct disorder, social phobia and separation anxiety were included. 
Parents were asked to rate their child’s overall behavior. Each question 
has the following response options: 0 = never, 1 = sometimes, 2 = often 
and 3 = very often. Previous studies found that the CASI-4R has good 
test–retest reliability, validity and internal consistency105.

Apathy Evaluation Scale, informant version
The Apathy Evaluation Scale, informant version (AES-I), was used to 
assess apathy106. The AES-I includes 18 items relating to cognitive, 
behavioral and emotional apathy. We asked parents to rate their 
child’s behavior over the previous 4 weeks. Each question is rated on 
a four-point scale (not at all, slightly true, somewhat true and very true), 
with higher scores reflecting greater apathy.
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MRI measures
MRI data were acquired with a standard whole-head coil on a 3.0-Tesla 
Siemens Prisma scanner at the Birkbeck-UCL Centre for Neuroimaging. 
To limit head motion, participants were asked to keep their heads as still 
as possible. Foam inserts were used between the head and the head coil 
to ensure a snug fit. Visual stimuli were projected onto a screen in the 
magnet bore that could be viewed via a mirror attached to the head coil. 
During the acquisition of the structural and diffusion tensor imaging 
(DTI) scan, participants watched cartoons without sound.

Task-related functional MRI. The same SSRT task used outside of 
the scanner was employed where two runs (54 trials each, jittered 
ITI = 2,200–3,000 ms) were administered. Each run lasted approxi-
mately 5 min each and was acquired using T2-weighted echo planar 
imaging (EPI; TR = 1.25 s, TE = 35.2 ms, sequential acquisition, 60 slices 
of 2 × 2 × 2 mm3 voxels, field of view 1,696 × 1,696, 106 × 106 matrix, 
in-plane resolution = 2 mm). The task was presented using Presenta-
tion software (version 23).

Cortical thickness. High-resolution T1-weighted images were acquired 
using a magnetization-prepared rapid gradient echo sequence 
(MP-RAGE; TR = 2.30 s TE = 2.98 ms, flip angle = 8°, slices = 1 × 1 × 1 mm3 
voxels, field of view 256 × 256). A total of 208 slices per participant 
(voxel size = 1 × 1 × 1 mm3) were collected, and the acquisition matrix 
ranged 256 × 256.

Resting state. Participants completed one run lasting 5 min (212 EPI 
volumes, 60 slices per volume, voxel size 2 × 2 × 2 mm3, TR = 1,250 ms, 
TE = 35.2 ms, flip angle = 65°). Participants were instructed to observe a 
fixation cross presented on a screen. For spatial normalization and ana-
tomical localization, a structural scan was obtained (see ‘Cortical thick-
ness’ subsection above). Finally, to improve functional-to-anatomical 
co-registration, a field map scan was acquired (one EPI volume, 72 
slices per volume, voxel size 2 × 2 × 2 mm3, TR = 8,000 ms, TE = 66 ms, 
flip angle = 90°).

DTI. Diffusion imaging was acquired while children were awake. A total 
of 72 contiguous near-axial slices were acquired for each volume, using 
an acquisition sequence fully optimized for clinical tractography, 
providing isotropic (2 × 2 × 2 mm) resolution and whole head cover-
age (matrix size 104 × 104 × 72, TR = 3,600 ms, TE = 92 ms). Then, 100 
diffusion-weighted volumes (50 × b-value of 1,000 s mm−2, 50 × b-value 
of 2,000 s mm−2) and five volumes without diffusion gradient were 
acquired.

Pre-processing and statistical analysis
Outliers were removed for all measures. Datapoints falling two standard 
deviations below or above the mean were excluded.

Cognitive control factors. Outliers were removed from each cognitive 
control measure. Datapoints falling two standard deviations below or 
above the mean were excluded. Then, a confirmatory factor analysis 
(CFA) was performed using ‘lavaan’ in RStudio to create latent factors of 
executive functions107. For T0 data, multiple models were fit; however, 
the model failed to converge for most models, with some of them dis-
playing negative variances, suggesting that models were mis-specified. 
Only two models converged: a model with a single factor encompass-
ing all tasks and a model with three subfactors of inhibition, shifting 
and memory. There were no significant differences in model fits (Δχ2 
(3) = 1.69, P = 0.638). The inhibition factor was extracted to examine 
correlations at T0 with the other domains. To examine training-related 
changes in executive functions, the factor analysis was conducted 
separately for error rate and reaction time data. This was done because 
a factor solution could not be found when composite measures of error 
rates and reaction times were used. For the error rate factor specifically, 

inclusion of flanker inhibition indices caused non-convergence of 
models and was excluded from analysis. Based on previous literature, 
factor loadings were constrained by timepoints to allow for pre–post 
comparisons establishing weak factorial invariance26. Values for each 
individual were extracted from this for further analysis. This was done 
separately for error rates and reaction times, where a larger value indi-
cated a larger error rate or reaction time.

Creativity. The TTCT responses were scored according to the Stream-
lined Scoring Guideline108. The responses were scored with respect to 
five norm-based creativity measures: fluency, originality, abstractness 
of titles, elaboration and resistance to premature closure. A higher 
score in any of the five subcategories indicates more unique answers 
and higher levels of creativity. In the present study, all responses were 
scored by a single scorer, and a sum score of all five categories was used 
for the analyses. To establish consistency, the scorer scored a random 
sample of 10 responses two times with 2 weeks in between. Eighty-six 
percent of the scores were consistent across the two separate scorings.

Mental health. A CFA was performed using ‘lavaan’ in RStudio to create 
latent factors of mental health107. Based on previous literature, factor 
loadings were constrained by timepoints to allow for pre–post com-
parisons establishing weak factorial invariance26. Factors of external-
izing problems and internalizing problems were created. Specifically, 
externalizing problems from the SDQ and CASI-ADHD problems loaded 
on the externalizing factor. Internalizing problems from the SDQ, 
CASI-social phobia, CASI-separation anxiety and CASI-depression 
loaded on the internalizing factor. Values for each individual were 
extracted from this for further analysis, where a larger value indicated 
greater mental health problems.

MRI measures. Task-related functional MRI. Each individual’s func-
tional scans were realigned to correct for head motion by initial 
realignment to first image and second realignment to mean image. 
The realigned scans were co-registered with anatomical T1-weighted 
images and spatially normalized to the standard Montreal Neurologi-
cal Institute (MNI) space by resampling to a voxel size of 2 × 2 × 2 mm3. 
Normalized images were smoothed with an 8-mm Gaussian filter. 
Fixed statistical effects were calculated at the individual level by 
modeling each trial condition (‘stop’ successful, ‘stop’ unsuccessful, 
‘go’ successful and ‘go’ unsuccessful) with a box car function con-
volved with the canonical hemodynamic response function. To reduce 
movement-related artifacts, six motion parameters were included as 
regressors as well as an additional regressor to model images that were 
corrupted due to head motion of more than 1.5 mm and were replaced 
by interpolations of adjacent images (<10% of participant’s data). To 
examine training-related changes from pre-test to post-test in ‘stop’ 
versus ‘go’ trial condition, the Sandwich Estimator Toolbox for Longi-
tudinal and Repeated Measures Data version 2.1.0 was employed (SwE, 
toolbox for SPM, Guillaume et al.109). Repeated-measures ANOVA was 
conducted at the group level, with the ‘stop’ successful condition and 
‘go’ successful condition entered as fixed effects and a subject factor 
entered as random effects. Family-wise error (FWE) corrections at 
P < 0.05 were applied to the data. Moreover, using the MarsBaR Tool-
box110 implemented in SPM12, we extracted functional activity from 
the right IFG selected from the probabilistic Harvard-Oxford atlas111 
(thresholded at 20%, center of mass: 51, 28, 8). Beta values for each 
ROI (that is, successful ‘stop’ trials versus successful ‘go’ trials) were 
extracted for further statistical analyses outside of SPM.

Cortical thickness. After converting the DICOM files to NifTI using 
dcm2niix, structural MRI images were processed with FreeSurfer112 
(version 6.0.0, http://surfer.nmr.mgh.harvard.edu) to label and seg-
ment cortex and white matter. All scans were then visually inspected 
for quality, and, if necessary, segmentation was manually corrected 
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in FreeSurfer. Four independent inspectors conducted these checks, 
and one final inspector performed a final inspection of all scans. After 
corrections, scans were re-segmented using FreeSurfer. If the quality of 
scans was inadequate, they were excluded from the final analysis. Based 
on this, data were available from 141 participants. After pre-processing, 
sulcal and gyral features across individual participants were aligned by 
morphing each participant’s brain to an average spherical representa-
tion that accurately matches cortical thickness measurements across 
participants while minimizing metric distortion. A 10-mm Gaussian 
smoothing kernel was applied to the data to reduce measurement noise 
but preserve the capacity for anatomical localizations113,114. Cortical 
thickness data were analyzed using the SurfStat toolbox for MAT-
LAB115 (https://www.math.mcgill.ca/keith/surfstat). Findings from the 
surface-based analyses were controlled for multiple comparisons using 
random field theory5,113,115. This reduced the chance of reporting an FWE. 
We ran whole-brain models looking at changes in cortical thickness 
after training by testing for a Session-by-Group interaction. Using the 
Desikan–Killiany atlas116, cortical thickness was extracted from the right 
IFG (comprising the right pars triangularis, the pars opercularis and 
the pars orbitalis) to look at the specific interaction within this region.

Resting state. Processing of resting-state functional connectivity 
(RSFC) data was completed with the ABCD-HCP pipeline (https://github. 
com/DCAN-Labs/abcd-hcp-pipeline), which is modified from the origi-
nal HCP pipelines117. In brief, this pipeline consists of six stages. First, the 
PreFreeSurfer stage normalizes anatomical data. This normalization 
includes brain extraction, denoising and then bias field correction on 
anatomical T1-weighted and/or T2-weighted data. To improve out-
put image quality, ANTs DenoiseImage attempts to remove scanner 
noise from T1 and T2 anatomical images by modeling scanner noise 
as a Rician distribution, and ANTs N4BiasFieldCorrection attempts to 
improve bias field correction. Second, the FreeSurfer stage constructs 
cortical surfaces from the normalized anatomical data. This stage also 
performs surface registration to a standard surface template, and 
surfaces are refined using the T2-weighted anatomical data. Third, the 
PostFreeSurfer stage transforms the volumes to a standard volume 
template space using ANTs nonlinear registration and the surfaces 
to the standard surface space via spherical registration. Fourth, the 
fMRIVolume stage performs processing of the functional data, includ-
ing correction for functional distortions via reverse-phase encoding 
spin echo images, intensity normalization to a whole-brain-mode value 
of 1,000, within-run correction for head movement and registration to 
the standard template. Fifth, the fMRISurface stage maps the normal-
ized functional volumes to the standard surface template. The BOLD 
functional MRI volumetric data were sampled to each participant’s 
original mid-thickness left and right hemisphere surfaces constrained 
by the gray matter ribbon. These surfaces were then combined with 
volumetric subcortical and cerebellar data into the CIFTI format using 
Connectome Workbench (https://www.humanconnectome.org/soft-
ware/connectome-workbench), creating full brain timecourses exclud-
ing non-gray matter tissue. The resting-state timecourses were then 
smoothed with a 2-mm full-width at half-maximum kernel applied 
to geodesic distances on surface data and Euclidean distances on 
volumetric data. Finally, the DCANBOLDproc stage performs further 
denoising steps to reduce variance unlikely to reflect neuronal activity. 
These denoising steps include a respiratory filter to improve framewise 
displacement estimates, temporal masks to flag motion-contaminated 
frames with a filtered framewise displacement greater than 0.3 mm, 
demeaning, detrending, interpolation across censored frames and a 
band-pass filter (0.008 Hz < f < 0.1 Hz).

After processing, time series of RSFC data were extracted using 
the Gordon-333 parcellation118, which includes 333 parcels (ROIs) that 
cover the whole cortical surface. These time series were further motion 
censored at a framewise displacement greater than 0.2 mm. Then, 
parcels were grouped for the networks of interest (FPN and CON), and 

Pearson correlations across parcels within each network were run. We 
then computed the mean z-score across all correlations within each 
network. Therefore, we obtained an RSFC value (z-score) for each 
network of interest, participant and timepoint.

DTI. The data were initially visually inspected. Volumes with extreme 
artifacts or corruption were removed. Across the dataset, the aver-
age number of volumes removed was 0.27 (range = 0–5) at T0 and 
0.97 (range = 0–10) at T1, accounting for 0.5% of the total number of 
volumes acquired. Data was then pre-processed using ExploreDTI 
(https://exploredti.com/). The data were corrected for head motion, 
eddy current distortions and EPI distortions, and the B-matrix was 
rotated119. Remaining outliers due to head motion and cardiac pulsa-
tion were excluded using REKINDLE. The tensor model was fitted to 
the data using a nonlinear least square fitting procedure. DTI scalar 
maps, including fractional anisotropy and mean diffusivity, were calcu-
lated and exported. A whole-brain tractography algorithm using Euler 
integration and the following settings was applied: step size = 0.5 mm, 
fractional anisotropy threshold ≥ 0.15 and angle threshold ≤ 35. 
Whole-brain tractography was exported to TrackVis (https://trackvis.
org/) to perform virtual in vivo dissections for the right hemisphere. 
The connections were dissected in regions corresponding to the puta-
men and the frontal lobes, providing measures for the fronto-putamen 
connections. All dissections were completed after ensuring intra-rater 
reliability. This was tested with the use of 10 participants from the pre-
sent study, dissected twice by the same dissector. Reliability was tested 
using a two-way mixed intra-class correlation coefficient (ICC)120. For 
all tracts, the ICC for single measures reached greater than 0.90. For 
each tract, fractional anisotropy and mean diffusivity were calculated. 
These measures reflect the structural integrity of the white matter 
connection and may indicate microstructural differences, such as 
myelination, axonal integrity and how compact fiber bundles are121. 
Fractional anisotropy is the degree of directionality of water motion 
within a particular voxel. Mean diffusivity is the average diffusion of 
water motion within a voxel.

Training-related changes. Mixed models were used to examine 
training-related changes using the ‘lme4’ package in R (version 4.3.1). 
In this model, the main effects of training group and session were 
examined as well as the interaction between Group and Session. Age 
and gender was added into the model as a covariate. Significant interac-
tion effects between Session and Group were interpreted as presence of 
training-related changes and followed up with post hoc paired t-tests. 
In a subset of available tasks, maintenance of training-related changes 
was examined between pre-test (T0) and 1-year follow-up (T2). For 
evidence of null effects, we report the BF in favor of the null model (the 
model without a Group-by-Session interaction) over the training model 
(the model with a Group-by-Session interaction) for each measure of 
interest122. The prior is set to be the model with main effects of Group 
and Session. We isolate this particular interaction as our training effect 
of interest where BF10 < 1 suggested evidence for the null hypothesis 
(that is, no training-related changes).

Data imputation. For all measures (unless specified otherwise), multi-
ple imputations by chained equations (MICE) was used to impute miss-
ing data (predictive mean matching; iterations = 20, n datasets = 100; 
Supplementary Fig. 4). A single imputed dataset was used, as this was 
necessary in conducting mixed models with post hoc tests and factor 
analysis. We ensured the replicability of these results by re-running 
the process multiple times and choosing a dataset at random. Missing 
data were imputed using the MICE package in R (50 datasets created, 
50 maximum iterations), and quickpred was used to create the imputa-
tion model123. Factors of executive function (at T0) and mental health 
factors were imputed using full information maximum likelihood 
(FIML) in ‘lavaan’.
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Correction for multiple comparisons. The Benjamini–Hoch-
berg procedure55 was applied to mixed model analysis testing for 
training-related changes. We used the adjustment method BH with the 
function p.adjust in R. For the results that are significant, we report their 
adjusted P value after correction to control FDR with multiple testing.

Test–retest reliability. To assess the reliability of outcome measures, 
we looked at both test–retest reliability and split-half reliability. To 
assess test–retest, ICCs were calculated using the ‘psych’ package in 
R. ICC(2,1) was chosen to allow different means at different timepoints 
using a two-way random-effects model. ICC was calculated on all avail-
able timepoints for each given measure. Percentage accuracy and mean 
reaction time for correct response were calculated for each participant 
per task for intra-class comparison (Supplementary Table 2). The data 
used for the reliability tests were not imputed. The Spearman–Brown 
coefficient was calculated using the ‘splithalfr’ package in R124. Percent-
age accuracy and mean reaction time for the first half and second half of 
the experiments were compared in the executive function tasks to test 
internal reliability (Supplementary Table 3). Mean percentage delayed 
choice was tested for Temporal Discounting Task. For questionnaires, 
Cronbach’s alpha was tested using the ‘psych’ package in R.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The raw data are available from the corresponding authors upon rea-
sonable request. The processed data necessary to reproduce the central 
findings of this study are available at our GitHub page: https://github.
com/ucjuliy/BIGDEVBRAINTRAIN.git. Source data are provided with 
this paper.

Code availability
Custom R scripts were used to analyze and plot all data. Code is avail-
able online at our GitHub page: https://github.com/ucjuliy/BIGDEV-
BRAINTRAIN.git.
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Extended Data Fig. 1 | Correlation plots of associations between cognitive 
control and domains before training. Significant associations were 
found between cognitive control performance and Academic performance 
(t(217) = 2.53, p = 0.0120, 95%CI = [0.0376, 0.295]), WASI fluid reasoning 
(t(216) = 2.27, p = 0.0240, 95%CI = [0.0203, 0.2800]), delay of gratification 

(t(226) = 2.44, p = 0.015, 95%CI = [0.0310, 0.2843]), externalising symptoms 
(t(184) = −2.15, p = 0.032, 95%CI = [−0.2940, −0.0131]), and mean diffusivity of 
right fronto-striatal tracts (t(145) = −2.81, p = 0.005, 95%CI = [−0.3754, −0.0679]) 
using one-way.
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Extended Data Fig. 2 | Training effect before and after COVID-19 lockdown. 
a, Changes in Apathy before and after COVID-19 lockdown (pre-COVID: 
Experimental Group (n = 95) = 28.85 ± 0.67, Control Group (n = 88) = 27.66 ± 0.65; 
post-COVID: Experimental Group (n = 82) = 32.77 ± 0.94, Control Group 

(n = 83) = 30.57 ± 0.93). Apathy in both groups increased significantly after 
lockdown. b, Changes in Strength & Difficulties scores (pre-COVID: Experimental 
Group (n = 95) = 7.53 ± 0.46, Control Group (n = 89) = 6.86 ± 0.51; post-COVID: 
Experimental Group (n = 82) = 8.15 ± 0.58, Control Group (n = 83) = 6.83 ± 0.50).
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Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Presentation (www.neurobs.com; Version 23); Gorilla (www.gorilla.sc) 

Data analysis SPM12, the Sandwich Estimator Toolbox v2.1.0 (Guillaume et al., 2014), the MarsBaR Toolbox (Brett et al. 2002), Dcm2niix (V1), FreeSurfer 

(Version 6.0.0), Matlab (2021a), SurfStat (https://www.math.mcgill.ca/keith/surfstat), ABCD-HCP pipeline (https://github.com/DCAN-Labs/

abcd-hcp-pipeline), Connectome Workbench (https://www.humanconnectome.org/software/connectome-workbench), ANTs DenoiseImage, 

ANTs N4BiasFieldCorrection, ExploreDTI (exploredti.com), TrackVis (trackvis.org), R (4.3.1 ), Rstudio (Version 2023.06.1+524), the MICE 

package (Buuren & Groothius-Oudshoorn, 2011), the lavaan package (Rosseel & Y. lavaan, 2012), the lme4 package (Bates et al.2015)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The raw data are available from the corresponding authors on  request. The processed data necessary to reproduce the central findings in the manuscript are 

available at our github page. Custom R scripts were used to analyze and plot all data. Code is available online at our github page.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Gender data were collected based on parent-report to ensure that the sample was balanced. Gender was accounted in all 

mixed models examining training-related changes.

Reporting on race, ethnicity, or 

other socially relevant 

groupings

Ethnicity data were collected to inform on the ethnic composition of the sample and whether it is representative. This 

included the following categories: Asian, Black, Mixed / multiple ethnic groups; White. Socioeconomic status (SES) was 

assessed based on employment and education of both parents. SES was used as a covariate in some analyses to test the 

generalisability of results.

Population characteristics A total of 262 typically developing children were recruited for the study (6.03-13.31 years; Age M = 8.97, Females = 52.84%) 

from schools within Greater London in the United Kingdom. Ethnic composition of our sample was as follows: Asian = 

14.65%; Black = 3.18%; Mixed/multiple ethnic groups = 17.20%; White = 64.33%; Other = 0.63%. 

Recruitment Recruitment occurred via contacting over 2000 schools in the Greater London area. Out of those schools 20 ended up 

participating from a diverse range of London boroughs. Information material was disseminated amongst parents of 

participating schools and only those children whose parents / carers had signed them up ended up taking part. 

Ethics oversight UCL ethics committee 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description The study used a longitudinal quantitative study design. Participants were randomly assigned into either an experimental group 

training cognitive control (through inhibition) or to an active control group training response speed. All participants undertook 8-

weeks training intervention. Behavioral and neuroimaging data were collected at T0 (pre-training), T1 (immediate post-training), and 

T2 (1-year post-training) to examine training effects. 

Research sample In order to examine if training cognitive control affects other domains in typically developing children, a total of 262 typically 

developing children were recruited for the study (6.03-13.31 years; Age M = 8.97, Females = 52.84%) from schools within Greater 

London in the United Kingdom effectively as a convenience sample. After exclusion of incomplete data, our sample consisted of 235 

children (6.03-13.31 years; Age M = 8.97, Females = 51.91%). Ethnic composition of our sample was as follows: Asian = 14.65%; Black 

= 3.18%; Mixed/multiple ethnic groups = 17.20%; White = 64.33%; Other = 0.63%. Although there was a positive skew in SES (M = 

1.64; on a scale of 1-5 where 1 is the highest score attainable), our further analyses showed that the results still hold in lower SES 

participants. The UCL ethics committee approved the study (Protocol number: 12271/001). In accordance with this, written consent 

was obtained from parents and assent from children after a description of the study was provided. 

Sampling strategy Convenience sampling was employed in the study. Sampling occurred via contacting over 2000 schools in the Greater London area. 

Out of those schools 20 ended up participating from a diverse range of London boroughs. Information material was disseminated 

amongst parents of participating schools and only those children whose parents / carers had signed them up ended up taking part. 

Power calculations estimated that to obtain even a small group by session interaction effect of f = 0.1 with a power of 0.95 at an 

alpha Bonferroni corrected for the present number of measures (19; corrected alpha = 0.0025) requires a minimal sample size of 119 



3

n
atu

re p
o

rtfo
lio

  |  rep
o

rtin
g

 su
m

m
ary

A
p

ril 2
0

2
3

participants. The present sample is almost twice that and therefore amply powered.

Data collection Data collection was divided into 4 main phases. After an initial baseline data collection phase at pre-test, the 8-week computerized 

intervention was administered. This was followed up by a post-test and finally, a 1-year-follow-up. Behavioural, questionnaires and 

neural data (i.e. at pre-test, post-test, 1-year-follow-up) were collected to examine independent near- and far-transfer changes. Due 

to disruptions to in-person testing during the Covid-19 pandemic, no MRI was obtained at 1-year follow-up. The 3 assessment 

timepoints took place onsite at the author’s laboratory: before the training (T0), after the training (T1), and one-year follow-up (T2). 

Note that, due to the outbreak of the COVID-19 pandemic in March 2020, some participants completed one or more assessment 

timepoints online from home. A total of 12 researchers were involved in data collection and in overseeing training taking part at 

school. Researchers were blind to the training condition of participants. Participants were blind to the training condition they had 

been assigned to. 

Timing Data collection started in May 2019 and ended in May 2021

Data exclusions Participants were excluded on the basis of formal diagnoses of neurodevelopmental disorders as well as a safety protocol for 

neuroimaging (e.g. metal in the body; claustrophobia).

Non-participation Retention was 71.24% from pre- to post-test and 99.40% from post-test to 1-year follow-up.

Randomization Children were randomly assigned to an experimental group training cognitive control (through inhibition) or to an active control 

group training response speed, with groups matched for gender and age, school and class based on mean matching. Matching was 

performed by an experimenter not involved in testing. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Magnetic resonance imaging

Experimental design

Design type Task-related fMRI with event related-design; Resting State fMRI

Design specifications The SSRT task used outside of the scanner was employed for task-related fMRI where 2 runs (54 trials each, jittered ITI = 

2200 to 3000ms) was administered. Each run lasted approximately 5 minutes each, and were acquired using T2*-

weighted echo-planar imaging. Each trial started with the presentation of a fixation cross of 1250ms. During the task, 

participants were asked to press the left arrow key when seeing the ‘go’ signal (i.e. a honey pot) on the left side of the 

screen and the down arrow key when the signal appeared on the right side. On 25% of the trials (i.e. a ‘stop’ trial), a 

picture of bees was presented after the honey pot. This served as the ‘stop’ signal. The stop signal delay (SSD) started at 

200ms, decreased by 50ms after a successful ‘stop’ trial, and increased by 50ms after an unsuccessful ‘stop’ trial.  

Resting State fMRI consisted of 1 run, which lasted  5 minutes. Participants were instructed to observe a fixation cross 

presented on a screen, which could be viewed through a mirror attached to the head coil. 

Behavioral performance measures Button press response were recorded during imaging acquisition. Fixed statistical effects were calculated at the 

individual level by modeling each trial condition (‘stop’ successful, ‘stop’ unsuccessful, ‘go’ successful and ‘go’ 

unsuccessful) with a box-car function convolved with the canonical hemodynamic response function.

Acquisition

Imaging type(s) functional, structural, diffusion MRI

Field strength 3.0T

Sequence & imaging parameters Task-related fMRI were acquired using T2*-weighted echo-planar imaging (EPI; TR = 1.25s, TE = 35.2 ms, sequential 

acquisition, 60 slices of 2 x 2 x 2 mm3 voxels, field of view 1696 x 1696, 106 × 106 matrix, in-plane resolution 2 mm). 

Resting State were completed in a 5-mins run (212 EPI volumes, 60 slices/volume, voxel size 2 x 2 x 2 mm3, TR = 1250 
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ms, TE = 35.2 ms, flip angle = 65º). High-resolution T1-weighted images were acquired using a magnetisation-prepared 

rapid gradient-echo sequence (MP-Rage; TR = 2.30s TE = 2.98ms, flip angle = 8°, slices = 1 x 1 x 1 mm3 voxels, field of 

view 256 x 256). A field map scan was acquired (1 EPI volume, 72 slices/volume, voxel size 2 x 2 x 2 mm3, TR = 8000 ms, 

TE = 66 ms, flip angle = 90º).

Area of acquisition Whole brain

Diffusion MRI Used Not used

Parameters The data is multi shell. 100 diffusion weighted volume directions (50 x b-value of 1,000 s/mm2, 50 x b-value of 2,000 s/mm2) and 5 

volumes without diffusion gradient. Cardiac gating was not used. 

Preprocessing

Preprocessing software Task-related fMRI: SPM12   

Resting state fMRI: the ABCD-HCP pipeline (https://github.com/DCAN-Labs/abcd-hcp-pipeline) 

Structural MRI: FreeSurfer (Version 6.0.0) 

Diffusion MRI: ExploreDTI

Normalization Task-related fMRI: Each individual’s functional scans were realigned to correct for head motion by initial realignment to first 

image and second realignment to mean image). The realigned scans were co-registered with anatomical T1-weighted images 

and spatially normalized to the standard Montreal Neurological Institute (MNI) space by resampling to a voxel size of 2 × 2 × 

2 mm3. Normalized images were smoothed with an 8-mm Gaussian filter. 

Resting state fMRI: The normalization takes 5 stages: First, the PreFreeSurfer stage normalises the anatomical data, including 

denoising and bias field correction. Second, the FreeSurfer stage prepares cortical surfaces from the normalised anatomical 

data, and performs registration to a standard surface template. Third, the PostFreeSurfer stage transforms the volumes to a 

standard volume template, and the surfaces to a standard surface space. Fourth, the fMRIVolume stage performs processing 

of the functional data, including bias field correction and registration to the standard volume template. Fifth, the fMRISurface 

stage maps the normalised functional volumes to the standard surface template.  

Structural MRI: sulcal and gyral features across individual subjects were aligned by morphing each subject’s brain to an 

average spherical representation that accurately matches cortical thickness measurements across participants while 

minimizing metric distortion. A 10mm Gaussian smoothing kernel was applied to data to reduce measurement noise but 

preserve the capacity for anatomical localizations. 

Diffusion MRI: The data was corrected for head motion, eddy current distortions and echo planar imaging distortions and the 

b-matrix was rotated. Remaining outliers due to head motion and cardiac pulsation were excluded using REKINDLE. The 

tensor model was fitted to the data using a nonlinear least square fitting procedure. DTI scalar maps, including fractional 

anisotropy and mean diffusivity were calculated and exported. 

Normalization template fMRI: standard Montreal Neurological Institute space (MNI152) 

Structural MRI: fsaverage5 

Noise and artifact removal fMRI: To reduce movement-related artifacts, six motion parameters were included as regressors, as well as an additional 

regressor to model images that were corrupted due to head motion >1.5 mm and were replaced by interpolations of 

adjacent images (<10% of participant's data).  

Diffusion MRI: A whole brain tractography algorithm using Euler integration and the following settings was applied: step size 

= 0.5 mm, fractional anisotropy threshold ≥0.15, and angle threshold ≤35.

Volume censoring MRI: All scans were manually visually inspected for quality, and if necessary, segmentation was manually corrected in 

FreeSurfer. Four independent inspectors conducted these checks, and one final inspector performed a final inspection of all 

scans. After corrections, scans were re-segmented using FreeSurfer.  

DTI: The connections were dissected in regions corresponding to the putamen and the frontal lobes, providing measures for 

the fronto-putamen connections. All dissections were completed after ensuring intrarater reliability.

Statistical modeling & inference

Model type and settings Effects were calculated with a stick function convolved with the canonical hemodynamic response function. Random effects 

(subject) were used at first level and fixed effects (condition) were used at second level.

Effect(s) tested Task-related fMRI: Repeated measures ANOVA was conducted at the group level, with the stop successful condition and go 

successful condition entered as fixed effects, and a subject factor entered as random effects. 

Structural: Cortex-wide linear models were used to assess the effects of training group and time, controlling for age and sex

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s)

Functional activity from the right inferior frontal gyrus were selected from the probabilistic Harvard-

Oxford atlas (thresholded at 20%, center of mass: 51, 28, 8). 

Using the Desikan-Killiany atlas, cortical thickness was extracted from the right IFG (compromising of the 

right pars triangularis, pars opercularis and pars orbitalis) to look at the specific interaction within this 

region. 

Statistic type for inference

(See Eklund et al. 2016)
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fMRI: FWE-corrected at cluster-level of p < .05, based on an uncorrected height threshold of p < .001.  

Structural MRI: Findings from the surface-based analyses were controlled for multiple comparisons using random field 

theory. This reduced the chance of reporting a family-wise error (FWE). The cluster-defining threshold was set to p< .01 and 

the FWE to p < .05. 

Correction Family wise error-corrections (FWE) at p < .05 were applied to the data.

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity fMRI: Time-series of RSFC data was extracted using the Gordon-333 parcellation, which includes 333 parcels 

(ROIs) that cover the whole cortical surface. Parcels were grouped for the networks of interest 

(frontoparietal network, FPN; cingulo-opercular network, CON) and correlations across parcels within each 

network were run. The mean Z-score were calculated across all correlations within each network and an 

RSFC value (Z-score) were obtained for each network of interest, participant and timepoint. 

DTI: Reliability was tested using a two-way mixed intraclass correlation coefficient (ICC).For all tracts, the ICC 

for single measures reached >0.90. For each tract fractional anisotropy and mean diffusivity were calculated. 

These measures reflect the structural integrity of the white matter connection and may indicate 

microstructural differences such as myelination, axonal integrity and how compact fiber bundles are.
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